The mechanism by which inflammasome activation is modulated remains unclear. In this study, we identified an AIM2-interacting protein, the E3 ubiquitin ligase HUWE1, which was also found to interact with NLRP3 and NLRC4 through the HIN domain of AIM2 and the NACHT domains of NLRP3 and NLRC4. The BH3 domain of HUWE1 was important for its interaction with NLRP3, AIM2, and NLRC4. Caspase-1 maturation, IL-1β release, and pyroptosis were reduced in Huwe1-deficient bone marrow–derived macrophages (BMDMs) compared with WT BMDMs in response to stimuli to induce NLRP3, NLRC4, and AIM2 inflammasome activation. Furthermore, the activation of NLRP3, NLRC4, and AIM2 inflammasomes in both mouse and human cells was remarkably reduced by treatment with the HUWE1 inhibitor BI8622. HUWE1 mediated the K27-linked polyubiquitination of AIM2, NLRP3, and NLRC4, which led to inflammasome assembly, ASC speck formation, and sustained caspase-1 activation. Huwe1-deficient mice had an increased bacterial burden and decreased caspase-1 activation and IL-1β production upon Salmonella, Francisella, or Acinetobacter baumannii infection. Our study provides insights into the mechanisms of inflammasome activation as well as a potential therapeutic target against bacterial infection.
Yu Guo, Longjun Li, Tao Xu, Xiaomin Guo, Chaoming Wang, Yihui Li, Yanan Yang, Dong Yang, Bin Sun, Xudong Zhao, Genze Shao, Xiaopeng Qi
Diabetes mellitus (DM) is a risk factor for cancer development. However, the role of DM induced hyperglycemic stress (HG) in the development of blood cancer is poorly understood, largely due to lack of appropriate animal models. Epidemiologic studies show that individuals with DM are more likely to possess higher rate of mutations in genes found in pre-leukemic stem and progenitor cells (pre-LHSC/Ps) including in the epigenetic regulator TET2. TET2-mutant pre-LHSC/Ps require additional hits to evolve into a full-blown leukemia and/or aggressive myeloproliferative neoplasm (MPN). Cell intrinsic mutations have been shown to cooperate with Tet2 to promote leukemic transformation. However, the role of extrinsic factors is poorly understood. Utilizing a novel mouse model bearing haploinsufficiency of Tet2, to mimic the human pre-LHSC/P condition and HG stress, in the form of an Ins2Akita/+ mutation, which induces HG and Type-1 DM, we show that the compound mutant mice develop a lethal form of MPN and/or acute myeloid leukemia (AML). RNAseq revealed that this is in part due to upregulation of pro-inflammatory pathways, thereby generating a feedforward loop, including the expression of an anti-apoptotic lncRNA Morrbid. Loss of Morrbid in the compound mutants rescues the lethality and mitigates the development of MPN/AML. Our results describe a novel mouse model for age-dependent AML/MPN and suggest that HG stress acts as an environmental driver for myeloid neoplasm, which could be effectively prevented by reducing the expression of inflammation-related lncRNA Morrbid.
Zhigang Cai, Xiaoyu Lu, Chi Zhang, Sai Nelanuthala, Fabiola Aguilera, Abigail Hadley, Baskar Ramdas, Fang Fang, Kenneth P. Nephew, Jonathan J. Kotzin, Adam Williams, Jorge Henao-Mejia, Laura S. Haneline, Reuben Kapur
While platelets are the cellular mediators of thrombosis, platelets are also immune cells. Platelets interact both directly and indirectly with immune cells, impacting their activation and differentiation, as well as all phases of the immune response. Megakaryocytes (Mks) are the cell source of circulating platelets, and until recently Mks were typically only considered as bone marrow (BM) resident cells. However, platelet producing Mks also reside in the lung, and lung Mks express greater levels of immune molecules compared to BM Mks. We therefore sought to define the immune functions of lung Mks. Using single cell RNA-Seq of BM and lung myeloid enriched cells, we found that lung Mks (MkL) had gene expression patterns that are similar to antigen presenting cells (APC). This was confirmed using imaging and conventional flow cytometry. The immune phenotype of Mks was plastic and driven by the tissue immune environment as evidenced by BM Mks having a MkL like phenotype under the influence of pathogen receptor challenge and lung associated immune molecules, such as IL-33. Our in vitro and in vivo assays demonstrated that MkL internalized and processed both antigenic proteins and bacterial pathogens. Furthermore, MkL induced CD4+ T cell activation in a MHC II dependent manner both in vitro and in vivo. These data indicated that Mks in the lung had key immune regulatory roles dictated in part by the tissue environment.
Daphne N. Pariser, Zachary T. Hilt, Sara K. Ture, Sara K. Blick-Nitko, Mark R. Looney, Simon J. Cleary, Estheany Roman-Pagan, Jerry Saunders II, Steve N. Georas, Janelle M. Veazey, Ferralita Madere, Laura Tesoro Santos, Allison M. Arne, Nguyen PT Huynh, Alison C. Livada, Selena M. Guerrero-Martin, Claire E. Lyons, Kelly A. Metcalf Pate, Kathleen E. McGrath, James Palis, Craig Morrell
BACKGROUND Cytotoxic T lymphocyte antigen 4 (CTLA4) is essential for immune homeostasis. Genetic mutations causing haploinsufficiency (CTLA4h) lead to a phenotypically heterogenous, immune-mediated disease that can include neuroinflammation. The neurological manifestations of CTLA4h are poorly characterized.METHODS We performed an observational natural history study of 50 patients with CTLA4h who were followed at the NIH. We analyzed clinical, radiological, immunological, and histopathological data.RESULTS Evidence for neuroinflammation was observed in 32% (n = 16 of 50) of patients in this cohort by magnetic resonance imaging (MRI) and/or by cerebrospinal fluid analysis. Clinical symptoms were commonly absent or mild in severity, with headaches as the leading complaint (n = 13 of 16). The most striking findings were relapsing, large, contrast-enhancing focal lesions in the brain and spinal cord observed on MRI. We detected inflammation in the cerebrospinal fluid and leptomeninges before the parenchyma. Brain biopsies of inflammatory lesions from 10 patients showed perivascular and intraparenchymal mixed cellular infiltrates with little accompanying demyelination or neuronal injury.CONCLUSIONS Neuroinflammation due to CTLA4h is mediated primarily by an infiltrative process with a distinct and striking dissociation between clinical symptoms and radiological findings in the majority of patients.FUNDING NIAID, NIH, Division of Intramural Research, NINDS, NIH, Division of Intramural Research, and the National Multiple Sclerosis Society–American Brain Foundation.TRIAL REGISTRATION ClinicalTrials.gov NCT00001355.
Matthew K. Schindler, Stefania Pittaluga, Yoshimi Enose-Akahata, Helen C. Su, V. Koneti Rao, Amy Rump, Steven Jacobson, Irene Cortese, Daniel S. Reich, Gulbu Uzel
Late-onset inflammatory toxicities resembling hemophagocytic lymphohistiocytosis (HLH) or macrophage activation syndrome (MAS) occur after chimeric antigen receptor T cell (CAR T cell) infusion and represent a therapeutic challenge. Given the established link between perforin deficiency and primary HLH, we investigated the role of perforin in anti-CD19 CAR T cell efficacy and HLH-like toxicities in a syngeneic murine model. Perforin contributed to both CD8+ and CD4+ CAR T cell cytotoxicity but was not required for in vitro or in vivo leukemia clearance. Upon CAR-mediated in vitro activation, perforin-deficient CAR T cells produced higher amounts of proinflammatory cytokines compared with WT CAR T cells. Following in vivo clearance of leukemia, perforin-deficient CAR T cells reexpanded, resulting in splenomegaly with disruption of normal splenic architecture and the presence of hemophagocytes, which are findings reminiscent of HLH. Notably, a substantial fraction of patients who received anti-CD22 CAR T cells also experienced biphasic inflammation, with the second phase occurring after the resolution of cytokine release syndrome, resembling clinical manifestations of HLH. Elevated inflammatory cytokines such as IL-1β and IL-18 and concurrent late CAR T cell expansion characterized the HLH-like syndromes occurring in the murine model and in humans. Thus, a murine model of perforin-deficient CAR T cells recapitulated late-onset inflammatory toxicities occurring in human CAR T cell recipients, providing therapeutically relevant mechanistic insights.
Kazusa Ishii, Marie Pouzolles, Christopher D. Chien, Rebecca A. Erwin-Cohen, M. Eric Kohler, Haiying Qin, Haiyan Lei, Skyler Kuhn, Amanda K. Ombrello, Alina Dulau-Florea, Michael A. Eckhaus, Haneen Shalabi, Bonnie Yates, Daniel A. Lichtenstein, Valérie S. Zimmermann, Taisuke Kondo, Jack F. Shern, Howard A. Young, Naomi Taylor, Nirali N. Shah, Terry J. Fry
Beclin 2 plays a critical role in metabolic regulation and obesity, but its functions in innate immune signaling and cancer development remain largely unknown. Here, we identified Beclin 2 as a critical negative regulator of inflammation and lymphoma development. Mice with homozygous ablation of BCL2-interacting protein 2 (Becn2) developed splenomegaly and lymphadenopathy and markedly increased ERK1/2 and NF-κB signaling for proinflammatory cytokine production. Beclin 2 targeted the key signaling kinases MEKK3 and TAK1 for degradation through an ATG9A-dependent, but ATG16L/Beclin 1/LC3–independent, autophagic pathway. Mechanistically, Beclin 2 recruited MEKK3 or TAK1 through ATG9A to form a complex (Beclin 2-ATG9A-MEKK3) on ATG9A+ vesicles upon ULK1 activation. Beclin 2 further interacted with STX5 and STX6 to promote the fusion of MEKK3- or TAK1-associated ATG9A+ vesicles to phagophores for subsequent degradation. Importantly, Becn2-deficient mice had a markedly increased incidence of lymphoma development, with persistent STAT3 activation. Myeloid-specific ablation of MEKK3 (Map3k3) completely rescued the phenotypes (splenomegaly, higher amounts of proinflammatory cytokines, and cancer incidence) of Becn2-deficient mice. Hence, our findings have identified an important role of Beclin 2 in the negative regulation of innate immune signaling and tumor development through an ATG9A-dependent, but ATG16L/Beclin 1/LC3–independent, autophagic pathway, thus providing a potential target for the treatment of inflammatory diseases and cancer.
Motao Zhu, Guangtong Deng, Peng Tan, Changsheng Xing, Cuiping Guan, Chongming Jiang, Yinlong Zhang, Bo Ning, Chaoran Li, Bingnan Yin, Kaifu Chen, Yuliang Zhao, Helen Y. Wang, Beth Levine, Guangjun Nie, Rong-Fu Wang
FOXP3+CD4+ regulatory T cells (Tregs) are critical for immune homeostasis and respond to local tissue cues, which control their stability and function. We explored here whether DEL-1, which, like Tregs, increases during resolution of inflammation, promotes Treg responses. DEL-1 enhanced Treg numbers and function at barrier sites (oral and lung mucosa). The underlying mechanism was dissected using mice lacking DEL-1 or expressing a point mutant thereof, or mice with T cell-specific deletion of the transcription factor RUNX1, identified by RNA-seq analysis of the DEL-1-induced Treg transcriptome. Specifically, through interaction with αvβ3-integrin, DEL-1 promoted induction of RUNX1-dependent FOXP3 expression and conferred stability of FOXP3 expression upon Treg restimulation in the absence of exogenous TGFβ1. Consistently, DEL-1 enhanced the demethylation of the Treg-specific demethylated region (TSDR) in the mouse Foxp3 gene and the suppressive function of sorted induced Tregs. Similarly, DEL-1 increased RUNX1 and FOXP3 expression in human conventional T cells promoting their conversion into induced Tregs with increased TSDR demethylation, enhanced stability and suppressive activity. We thus uncovered a DEL-1-αvβ3-RUNX1 axis that promotes Treg responses at barrier sites and offers novel therapeutic options for modulating inflammatory/autoimmune disorders.
Xiaofei Li, Alessandra Colamatteo, Lydia Kalafati, Tetsuhiro Kajikawa, Hui Wang, Jong-Hyung Lim, Khalil Bdeir, Kyoung-Jin Chung, Xiang Yu, Clorinda Fusco, Antonio Porcellini, Salvatore De Simone, Giuseppe Matarese, Triantafyllos Chavakis, Veronica De Rosa, George Hajishengallis
Epstein-Barr virus-induced gene 3 (EBI3) is a subunit common to IL-27, IL-35, and IL-39. Here, we explore an intracellular role of EBI3 independent of function as cytokines. EBI3-deficient naive CD4+ T cells had reduced IFN-γ production and failed to induce T cell-dependent colitis in mice. Similarly reduced IFN-γ production was observed in vitro in EBI3-deficient CD4+ T cells differentiated under pathogenic Th17 polarizing conditions with IL-23. This is because the induction of expression of one of IL-23 receptor (R) subunits, IL-23Rα, but not another IL-23R subunit, IL-12Rβ1, was selectively decreased at the protein level but not the mRNA level. EBI3 augmented IL-23Rα expression via binding to the chaperone molecule calnexin and to IL-23Rα in a peptide-dependent manner, but not glycan-dependent manner. Indeed, EBI3 failed to augment the IL-23Rα expression in the absence of endogenous calnexin. Moreover, EBI3 poorly augmented the expression of G149R, an IL-23Rα variant that protects against the development of human colitis, because binding of EBI3 to the variant was reduced. Taking together with the result that EBI3 expression is inducible in T cells, the present results suggest that EBI3 plays a critical role in augmenting IL-23Rα protein expression via calnexin under inflammatory conditions.
Izuru Mizoguchi, Mio Ohashi, Hideaki Hasegawa, Yukino Chiba, Naoko Orii, Shinya Inoue, Chiaki Kawana, Mingli Xu, Katsuko Sudo, Koji Fujita, Masahiko Kuroda, Shin-ichi Hashimoto, Kouji Matsushima, Takayuki Yoshimoto
Background:While mitochondria play an important role in innate immunity, the relationship between mitochondrial dysfunction and inflammation in heart failure (HF) is poorly understood. In this study we aimed to investigate the mechanistic link between mitochondrial dysfunction and inflammatory activation in peripheral blood mononuclear cells (PBMCs), and the potential anti-inflammatory effect of boosting NAD level.Methods:We compared the PBMC mitochondrial respiration of 19 hospitalized Stage D HF patients with 19 healthy participants. We then created an in vitro model of sterile inflammation by treating healthy PBMC with MitoDAMP (Mitochondrial Damage-Associated Molecular Patterns) isolated from human heart tissue. Lastly, we enrolled Stage D HF patients and sampled their blood before and after taking 5-9 days of oral nicotinamide riboside, an NAD precursor.Results:We demonstrated that HF is associated with both reduced respiratory capacity and elevated proinflammatory cytokine gene expressions. In our in vitro model, MitoDAMP-treated PBMCs secreted IL-6 that impaired mitochondrial respiration by reducing Complex I activity. Last, oral NR administration enhanced PBMC respiration and reduced proinflammatory cytokine gene expression in 4 HF subjects.Conclusion:These findings suggest that systemic inflammation in HF patients is causally linked to mitochondrial function of the PBMC. Increasing NAD levels may have the potential to improve mitochondrial respiration and attenuate proinflammatory activation of PBMC in HF. FundingThis study is funded by NIH R21 HL126209 (to RT and KO), NIH R01 HL144937 (to KO and RT) and University of Washington ITHS Catalyst Award (to DDW). Both BZ (18POST33990352) and DDW (18POST34030098) are funded by the AHA Postdoctoral Fellowships.
Bo Zhou, Dennis D. Wang, Yanhua Qiu, Sophia Airhart, Yaxin Liu, April Stempien-Otero, Kevin D. O’Brien, Rong Tian.
Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis but its contribution to macrophage functions and host defense remains to be delineated. Here we showed that lipopolysaccharide (LPS) in combination with IFNγ, inhibits PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11. In addition, we demonstrated that the inhibition of mitophagy triggers classical macrophage activation in a mitochondrial ROS-dependent manner. In a murine model of polymicrobial infection (cecal ligature and puncture, CLP), adoptive transfer of Pink1-deficient bone marrow or pharmacological inhibition of mitophagy promoted macrophage activation which favored bactericidal clearance and lead to a better survival. Reciprocally, mitochondrial uncouplers, that promote mitophagy, reverse LPS/IFNγ-mediated activation of macrophages and lead to immuno-paralysis with impaired bacterial clearance and lowered survival. In critically ill patients, we showed that mitophagy is inhibited in blood monocytes of patients with sepsis as compared to non-septic patients. Overall, this work demonstrates that the inhibition of mitophagy is a physiological mechanism that contributes to the activation of myeloid cells and improves the outcome of sepsis.
Danish Patoli, Franck Mignotte, Valérie Deckert, Alois Dusuel, Adelie Dumont, Aurelie Rieu, Antoine Jalil, Kevin Van Dongen, Thibaut Bourgeois, Thomas Gautier, Charlene Magnani, Naig Le Guern, Stéphane Mandard, Jean Bastin, Fatima Djouadi, Christine Schaeffer, Nina Guillaumot, Michel Narce, Maxime Nguyen, Julien Guy, Auguste Dargent, Jean-Pierre Quenot, Mickaël Rialland, David Masson, Johan Auwerx, Laurent Lagrost, Charles Thomas
No posts were found with this tag.