Immunological synapses are organized cell-cell junctions between T lymphocytes and APCs composed of an adhesion ring, the peripheral supramolecular activation cluster (pSMAC), and a central T cell receptor cluster, the central supramolecular activation cluster (cSMAC). In CD8+ cytotoxic T lymphocytes, the immunological synapse is thought to facilitate specific killing by confining cytotoxic agents to the synaptic cleft. We have investigated the interaction of human CTLs and helper T cells with supported planar bilayers containing ICAM-1. This artificial substrate provides identical ligands to CD4+ and CD8+ T cells, allowing a quantitative comparison. We found that cytotoxic T lymphocytes form a ring junction similar to a pSMAC in response to high surface densities of ICAM-1 in the planar bilayer. MICA, a ligand for NKG2D, facilitated the ring junction formation at lower surface densities of ICAM-1. ICAM-1 and MICA are upregulated in tissues by inflammation- and stress-associated signaling, respectively. Activated CD8+ T cells formed fivefold more ring junctions than did activated CD4+ T cells. The ring junction contained lymphocyte function associated antigen-1 and talin, but did not trigger polarization and granule translocation to the interface. This result has specific implications for the mechanism of effective CTL hunting for antigen in tissues. Abnormalities in this process may alter CTL reactivity.
Kristina Somersalo, Nadja Anikeeva, Tasha N. Sims, V. Kaye Thomas, Roland K. Strong, Thomas Spies, Tatiana Lebedeva, Yuri Sykulev, Michael L. Dustin
The TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis of tumor cells but not most normal cells. Its role in hepatic cell death and hepatic diseases is not clear. In vitro studies suggest that murine hepatocytes are not sensitive to TRAIL-induced apoptosis, indicating that TRAIL may not mediate hepatic cell death. Using two experimental models of hepatitis, we found that hepatic cell death in vivo was dramatically reduced in TRAIL-deficient mice and mice treated with a blocking TRAIL receptor. Although both TRAIL and its death receptor 5 were constitutively expressed in the liver, TRAIL expression by immune cells alone was sufficient to restore the sensitivity of TRAIL-deficient mice to hepatitis. Thus, TRAIL plays a crucial role in hepatic cell death and hepatic inflammation.
Shi-Jun Zheng, Pu Wang, Galit Tsabary, Youhai H. Chen
Antiphospholipid syndrome (APS) is defined by recurrent pregnancy loss and thrombosis in the presence of antiphospholipid (aPL) Ab’s. Currently, therapy for pregnant women with APS is focused on preventing thrombosis, but anticoagulation is only partially successful in averting miscarriage. We hypothesized that complement activation is a central mechanism of pregnancy loss in APS and tested this in a model in which pregnant mice receive human IgG containing aPL Ab’s. Here we identify complement component C5 (and particularly its cleavage product C5a) and neutrophils as key mediators of fetal injury, and we show that Ab’s or peptides that block C5a–C5a receptor interactions prevent pregnancy complications. The fact that F(ab)′2 fragments of aPL Ab’s do not mediate fetal injury and that C4-deficient mice are protected from fetal injury suggests that activation of the complement cascade is initiated via the classical pathway. Studies in factor B–deficient mice, however, indicate that alternative pathway activation is required and amplifies complement activation. In contrast, activating FcγRs do not play an important role in mediating aPL Ab–induced fetal injury. Our findings identify the key innate immune effectors engaged by pathogenic autoantibodies that mediate poor pregnancy outcomes in APS and provide novel and important targets for prevention of pregnancy loss in APS.
Guillermina Girardi, Jessica Berman, Patricia Redecha, Lynn Spruce, Joshua M. Thurman, Damian Kraus, Travis J. Hollmann, Paolo Casali, Michael C. Caroll, Rick A. Wetsel, John D. Lambris, V. Michael Holers, Jane E. Salmon
Gastrointestinal allergic disorders represent a diverse spectrum of inflammatory diseases that are occurring with increasing incidence and severity. An essential question concerning these disorders is to determine the specific cells and mediators responsible for specific clinical manifestations. With this in mind, we developed a murine model of oral allergen–induced intestinal inflammation accompanied by strong Th2-associated humoral and cellular responses and focused on the immunopathogenesis of allergic diarrhea. Exposure of OVA/alum–sensitized mice to repeated doses of intragastric OVA induced genetically restricted, dose-dependent, acute diarrhea associated with increased intestinal permeability, eosinophilia, and mastocytosis. Mice developed limited systemic manifestations of anaphylaxis, even though they developed marked intestinal mucosal mast cell degranulation. Notably, experiments involving mast cell depletion (with anti–c-kit mAb), anti-IgE treatment, and FcεRI-deficient mice indicated a critical effector role for mast cells in mediating allergic diarrhea. Furthermore, allergic diarrhea was dependent upon synergistic signaling induced by serotonin and platelet-activating factor (PAF), but not histamine. These results demonstrate that oral allergen–induced diarrhea associated with experimental Th2 intestinal inflammation is largely mast cell, IgE, serotonin, and PAF dependent.
Eric B. Brandt, Richard T. Strait, Dan Hershko, Quan Wang, Emily E. Muntel, Troy A. Scribner, Nives Zimmermann, Fred D. Finkelman, Marc E. Rothenberg
CD4+CD25+ regulatory T cells (Treg’s) play a pivotal role in preventing organ-specific autoimmune diseases and in inducing tolerance to allogeneic organ transplants. We and others recently demonstrated that high numbers of Treg’s can also modulate graft-versus-host disease (GVHD) if administered in conjunction with allogeneic hematopoietic stem cell transplantation in mice. In a clinical setting, it would be impossible to obtain enough freshly purified Treg’s from a single donor to have a therapeutic effect. Thus, we performed regulatory T cell expansion ex vivo by stimulation with allogeneic APCs, which has the additional effect of producing alloantigen-specific regulatory T cells. Here we show that regulatory T cells specific for recipient-type alloantigens control GVHD while favoring immune reconstitution. Irrelevant regulatory T cells only mediate a partial protection from GVHD. Preferential survival of specific regulatory T cells, but not of irrelevant regulatory T cells, was observed in grafted animals. Additionally, the use of specific regulatory T cells was compatible with some form of graft-versus-tumor activity. These data suggest that recipient-type specific Treg’s could be preferentially used in the control of GVHD in future clinical trials.
Aurélie Trenado, Frédéric Charlotte, Sylvain Fisson, Micael Yagello, David Klatzmann, Benoît L. Salomon, José L. Cohen
A girl with congenital agammaglobulinemia and minor facial anomalies lacked B cells in peripheral blood: karyotypic analysis of white blood cells showed balanced translocation, t(9;20)(q33.2;q12). In the current study, we isolated a novel gene, leucine-rich repeat–containing 8 (LRRC8), at the translocation site on chromosome 9. It has four transmembrane helixes with one isolated and eight sequentially located leucine-rich repeats (LRRs) and constitutes a new protein family. It is expressed on T cells as well as on B-lineage cells. Translocation truncates the LRRC8 gene, resulting in deletion of the eighth, ninth, and half of the seventh LRR domains located close to the C-terminal. The truncated form of the LRRC8 gene is transcribed with sequences from the noncoding region adjacent to the truncated seventh LRR. Protein products derived from the truncated gene are coexpressed on white blood cells with the intact LRRC8 protein from the untranslocated allele. Transplantation experiments with murine bone marrow cells that were forced to express the truncated LRRC8 show that expression of the truncated protein inhibited B cell development. These results indicate that LRRC8 is responsible for the B cell deficiency in this patient and is required for B cell development.
Akihisa Sawada, Yoshihiro Takihara, Ji Yoo Kim, Yoshiko Matsuda-Hashii, Sadao Tokimasa, Hiroyuki Fujisaki, Keiko Kubota, Hiroko Endo, Takashi Onodera, Hideaki Ohta, Keiichi Ozono, Junichi Hara
T cell homing to sites of injury and inflammation is a critical step for adaptive immune responses. While much has been learned regarding T cell homing to lymphoid tissues, few studies have directly observed trafficking events during an effector response. In this study, we developed a model that uses intravital fluorescence videomicroscopy to determine the molecules critical to T cell rolling within skin allograft microvasculature during the effector phase of the rejection response. Additional studies were performed to quantify T cell infiltrates as rejection progressed. We found that P-selectin and E-selectin expressed on postcapillary venules play overlapping roles in the recruitment of activated T cells in a SCID reconstitution model of skin graft rejection and are important in T cell accumulation at the graft site. Surprisingly, we also found that naive T cells are recruited and accumulate via constitutive T cell L-selectin and upregulated L-selectin ligands on rejecting allograft vasculature. These data indicated that a specific retinue of molecules is upregulated during the rejection response, and they suggest potential future therapeutic targets.
Thomas R. Jones, Nozomu Shirasugi, Andrew B. Adams, Thomas C. Pearson, Christian P. Larsen
Human neutrophil adherence to ECMs induces an initial inhibition of stimulated reactive oxygen species (ROS) formation, followed by an enhanced phase of oxidant production. The initial integrin-mediated suppression of ROS constitutes a mechanism to prevent inappropriate tissue damage as leukocytes migrate to inflammatory sites. The Rac2 guanosine 5′-triphosphatase (GTPase) is a critical regulatory component of the phagocyte NADPH oxidase. We show that activation of Rac2 is inhibited in adherent neutrophils, correlating with inhibition of ROS formation. Conversely, NADPH oxidase components p47 and p67 assemble normally, suggesting a specific action of adhesion on the Rac2 molecular switch. Reconstitution with activated Rac2 restored rapid NADPH oxidase activation kinetics to adherent neutrophils, establishing that inhibition was due to defective Rac2 activity. We provide evidence that integrins inhibit Rac2 activation via a membrane-associated guanine nucleotide exchange factor, likely to be Vav1. Activation of Vav1, but not its upstream activator, Syk, is suppressed by cell adhesion. Vav1 activity is inhibited due to dephosphorylation of the regulatory Tyr174 via enhanced tyrosine phosphatase activity in adherent cells. These studies identify an integrin-mediated pathway in which Vav1 is as a strong candidate for the critical regulatory point in suppression of Rac2 activation and ROS generation during inflammatory responses.
Tieming Zhao, Valerie Benard, Benjamin P. Bohl, Gary M. Bokoch
Notch signaling plays a fundamental role in determining the outcome of differentiation processes in many tissues. Notch signaling has been implicated in T versus B cell lineage commitment, thymic differentiation, and bone marrow hematopoietic precursor renewal and differentiation. Notch receptors and their ligands are also expressed on the surface of mature lymphocytes and APCs, but the effects of Notch signaling in the peripheral immune system remain poorly defined. The aim of the studies reported here was to investigate the effects of signaling through the Notch receptor using a ligand of the Delta-like family. We show that Notch ligation in the mature immune system markedly decreases responses to transplantation antigens. Constitutive expression of Delta-like 1 on alloantigen-bearing cells renders them nonimmunogenic and able to induce specific unresponsiveness to a challenge with the same alloantigen, even in the form of a cardiac allograft. These effects could be reversed by depletion of CD8+ cells at the time of transplantation. Ligation of Notch on splenic CD8+ cells results in a dramatic decrease in IFN-γ with a concomitant enhancement of IL-10 production, suggesting that Notch signaling can alter the differentiation potential of CD8+ cells. These data implicate Notch signaling in regulation of peripheral immunity and suggest a novel approach for manipulating deleterious immune responses.
Kenneth K. Wong, Matthew J. Carpenter, Lesley L. Young, Susan J. Walker, Grahame McKenzie, Alyson J. Rust, George Ward, Laura Packwood, Karen Wahl, Luc Delriviere, Gerard Hoyne, Paul Gibbs, Brian R. Champion, Jonathan R. Lamb, Margaret J. Dallman
CC chemokine ligand 21 (CCL21)/secondary lymphoid chemokine (SLC), a ligand for CC chemokine receptor 7 (CCR7), has been demonstrated to play a vital role in the homing and localization of immune cells to lymphoid tissues, but its role in nonlymphoid tissues largely remains undefined. Here, we provide evidence that CCL21 in lymphoid and nonlymphoid tissues is differentially regulated by lymphotoxin-dependent (LT-dependent) and -independent mechanisms, respectively. This differential regulation is due to the selective regulation of the CCL21-Ser/CCL21a but not the CCL21-Leu/CCL21b gene by the LT and noncanonical NF-κB pathways. This alternate pathway, not dependent on LT or lymphocytes, leading to constitutive expression of CCL21 in nonlymphoid tissues, is critical for the initial recruitment of T lymphocytes to peripheral effector sites. CCL21 expression is subsequently further enhanced in a LT-dependent fashion following airway challenge, potentially facilitating a positive feedback loop to attract additional CCR7+ effector cells. These findings establish an essential role for CCL21 in the recruitment of effector T cells to peripheral tissues and suggest that LT-dependent and -independent regulation of CCL21 plays a role in balancing the central and peripheral immune responses between lymphoid and nonlymphoid tissues.
James C. Lo, Robert K. Chin, Youjin Lee, Hyung-Sik Kang, Yang Wang, Joel V. Weinstock, Theresa Banks, Carl F. Ware, Guido Franzoso, Yang-Xin Fu