Mast cells are involved in many disorders where the triggering mechanism that leads to degranulation and/or cytokine secretion has not been defined. Several chronic inflammatory diseases are associated with increased mast cell numbers and upregulation of the TNF receptor family member CD30, but the role of elevated CD30 expression is poorly understood. Here we report what we believe to be a novel way to activate mast cells with CD30 that leads to degranulation-independent secretion of chemokines. CD30 induced a de novo synthesis and secretion of the chemokines IL-8, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, a process involving the MAPK/ERK pathway. Mast cells were found to be the predominant CD30 ligand–positive (CD30L-positive) cell in the chronic inflammatory skin diseases psoriasis and atopic dermatitis, and both CD30 and CD30L expression were upregulated in lesional skin in these conditions. Furthermore, the number of IL-8–positive mast cells was elevated both in psoriatic and atopic dermatitis lesional skin as well as in ex vivo CD30-treated healthy skin organ cultures. In summary, characterization of CD30 activation of mast cells has uncovered an IgE-independent pathway that is of importance in understanding the entirety of the role of mast cells in diseases associated with mast cells and CD30 expression. These diseases include Hodgkin lymphoma, atopic dermatitis, and psoriasis.
Marie Fischer, Ilkka T. Harvima, Ricardo F.S. Carvalho, Christine Möller, Anita Naukkarinen, Gunilla Enblad, Gunnar Nilsson
Transgenic mice overexpressing PKCα in the epidermis (K5-PKCα mice) exhibit an inducible severe intraepidermal neutrophilic inflammation and systemic neutrophilia when PKCα is activated by topical 12-O-tetradecanoylphorbol-13-acetate (TPA). This inducible model of cutaneous inflammation was used to define mediators of skin inflammation that may have clinical relevance. Activation of cutaneous PKCα increased the production of the chemotactic factors cytokine-induced neutrophil chemoattractant (KC) and macrophage inflammatory protein 2 (MIP-2) in murine plasma. TPA treatment of cultured K5-PKCα keratinocytes also released KC and MIP-2 into culture supernatants through an NF-κB–dependent pathway. MIP-2 and KC mediated the infiltration of neutrophils into the epidermis, since this was prevented by ablating CXCR2 in K5-PKCα mice or administering neutralizing antibodies against KC or MIP-2. The neutrophilia resulted from PKCα-mediated upregulation of cutaneous G-CSF released into the plasma independent of CXCR2. These responses could be inhibited by topical treatment with a PKCα-selective inhibitor. Inhibiting PKCα also reduced the basal and TNF-α– or TPA-induced expression of CXCL8 in cultured psoriatic keratinocytes, suggesting that PKCα activity may contribute to psoriatic inflammation. Thus, skin can be the source of circulating factors that have both local and systemic consequences, and these factors, their receptors, and possibly PKCα could be therapeutic targets for inhibition of cutaneous inflammation.
Christophe Cataisson, Andrea J. Pearson, Margaret Z. Tsien, Francesca Mascia, Ji-Liang Gao, Saveria Pastore, Stuart H. Yuspa
Psoriasis is a common skin disease, the pathogenesis of which has not yet been resolved. In mice, epidermis-specific deletion of inhibitor of NF-κB (IκB) kinase 2 (IKK2) results in a skin phenotype that mimics human psoriasis in several aspects. Like psoriasis, this skin disease shows pronounced improvement when mice are treated with a TNF-neutralizing agent. We have found previously that this phenotype does not depend on the presence of αβ T lymphocytes. In order to evaluate contributions of other immune cell populations to the skin disease, we selectively eliminated macrophages and granulocytes from the skin of mice with epidermis-specific deletion of IKK2 (K14-Cre-IKK2fl/fl mice). Elimination of skin macrophages by subcutaneous injection of clodronate liposomes was accompanied by inhibition of granulocyte migration into the skin and resulted in a dramatic attenuation of psoriasis-like skin changes. The hyperproliferative, inflammatory skin disease in K14-Cre-IKK2fl/fl mice was a direct consequence of the presence of macrophages in the skin, as targeted deletion of CD18, which prevented accumulation of granulocytes but not macrophages, did not lead to major changes in the phenotype. Targeted deletion of the receptor for IFN-γ revealed that the pathogenesis of the skin disease does not depend on classical IFN-γ–mediated macrophage activation. Our results demonstrate that in mice epidermal keratinocytes can initiate a hyperproliferative, inflammatory, IFN-γ–independent, psoriasis-like skin disease whose development requires essential contributions from skin macrophages but not from granulocytes or αβ T lymphocytes.
Athanasios Stratis, Manolis Pasparakis, Rudolf A. Rupec, Doreen Markur, Karin Hartmann, Karin Scharffetter-Kochanek, Thorsten Peters, Nico van Rooijen, Thomas Krieg, Ingo Haase
The CD18 hypomorphic (CD18hypo) PL/J mouse model clinically resembling human psoriasis is characterized by reduced expression of the common chain of β2 integrins (CD11/CD18) to only 2–16% of WT levels. Previously we found that this chronic psoriasiform skin inflammation also depends on the presence of CD4+ T cells. Herein we investigated the role of macrophages in this CD18hypo mouse model. Activated macrophages were significantly increased in lesional skin as well as in inflamed skin draining lymph nodes (DLNs) of affected CD18hypo mice and were identified as being an important source of TNF-α in vivo. Both depletion of macrophages and neutralization of TNF-α resulted in a significant alleviation of psoriasiform skin inflammation. As monocyte chemotactic protein 1 was enhanced in lesional skin of affected CD18hypo mice, we intradermally injected recombinant murine monocyte chemotactic protein-1 (rJE/MCP-1) alone or in combination with rTNF-α into the skin of healthy CD18hypo mice. Only simultaneous injection of rJE/MCP-1 and rTNF-α, but neither substance alone, resulted in the induction of psoriasiform skin inflammation around the injection sites with recruitment and activation of macrophages. Collectively, our data suggest that maintenance of psoriasiform skin inflammation critically depends on efficient recruitment and activation of macrophages with sufficient release of TNF-α.
Honglin Wang, Thorsten Peters, Daniel Kess, Anca Sindrilaru, Tsvetelina Oreshkova, Nico Van Rooijen, Athanasios Stratis, Andreas C. Renkl, Cord Sunderkötter, Meinhard Wlaschek, Ingo Haase, Karin Scharffetter-Kochanek
Epidermal nevi are common congenital skin lesions with an incidence of 1 in 1,000 people; however, their genetic basis remains elusive. Germline mutations of the FGF receptor 3 (FGFR3) cause autosomal dominant skeletal disorders such as achondroplasia and thanatophoric dysplasia, which can be associated with acanthosis nigricans of the skin. Acanthosis nigricans and common epidermal nevi of the nonorganoid, nonepidermolytic type share some clinical and histological features. We used a SNaPshot multiplex assay to screen 39 epidermal nevi of this type of 33 patients for 11 activating FGFR3 point mutations. In addition, exon 19 of FGFR3 was directly sequenced. We identified activating FGFR3 mutations, almost exclusively at codon 248 (R248C), in 11 of 33 (33%) patients with nonorganoid, nonepidermolytic epidermal nevi. In 4 of these cases, samples from adjacent histologically normal skin could be analyzed, and FGFR3 mutations were found to be absent. Our results suggest that a large proportion of epidermal nevi are caused by a mosaicism of activating FGFR3 mutations in the human epidermis, secondary to a postzygotic mutation in early embryonic development. The R248C mutation appears to be a hot spot for FGFR3 mutations in epidermal nevi.
Christian Hafner, Johanna M.M. van Oers, Thomas Vogt, Michael Landthaler, Robert Stoehr, Hagen Blaszyk, Ferdinand Hofstaedter, Ellen C. Zwarthoff, Arndt Hartmann
We found that sterile wounding of human skin induced epidermal expression of the antimicrobial (poly)peptides human β-defensin–3, neutrophil gelatinase–associated lipocalin, and secretory leukocyte protease inhibitor through activation of the epidermal growth factor receptor. After skin wounding, the receptor was activated by heparin-binding epidermal growth factor that was released by a metalloprotease-dependent mechanism. Activation of the epidermal growth factor receptor generated antimicrobial concentrations of human β-defensin–3 and increased the activity of organotypic epidermal cultures against Staphylococcus aureus. These data demonstrate that sterile wounding initiates an innate immune response that increases resistance to overt infection and microbial colonization.
Ole E. Sørensen, Dharma R. Thapa, K. Markus Roupé, Erika V. Valore, Ulf Sjöbring, Alice A. Roberts, Artur Schmidtchen, Tomas Ganz
Inflammatory skin disorders result in significant epidermal changes, including keratinocyte hyperproliferation, incomplete differentiation, and impaired barrier. Here we test whether, conversely, an impaired epidermal barrier can promote an inflammatory response. Mice lacking the transcription factor Kruppel-like factor 4 (Klf4) have a severe defect in epidermal barrier acquisition. Transcription profiling of Klf4–/– newborn skin revealed similar changes in gene expression to involved psoriatic plaques, including a significant upregulation of the gap junction protein connexin 26 (Cx26). Ectopic expression of Cx26 from the epidermis-specific involucrin (INV) promoter (INV-Cx26) demonstrated that downregulation of Cx26 is required for barrier acquisition during development. In juvenile and adult mice, persistent Cx26 expression kept wounded epidermis in a hyperproliferative state, blocked the transition to remodeling, and led to an infiltration of immune cells. Mechanistically, ectopic expression of Cx26 in keratinocytes resulted in increased ATP release, which delayed epidermal barrier recovery and promoted an inflammatory response in resident immune cells. These results provide a molecular link between barrier acquisition in utero and epidermal remodeling after wounding. More generally, these studies suggest that the most effective treatments for inflammatory skin disorders might concomitantly suppress the immune response and enhance epidermal differentiation to restore the barrier.
Ali R. Djalilian, David McGaughey, Satyakam Patel, Eun Young Seo, Chenghua Yang, Jun Cheng, Melanija Tomic, Satrajit Sinha, Akemi Ishida-Yamamoto, Julia A. Segre
The human hair follicle bulge is an important niche for keratinocyte stem cells (KSCs). Elucidation of human bulge cell biology could be facilitated by analysis of global gene expression profiles and identification of unique cell-surface markers. The lack of distinctive bulge morphology in human hair follicles has hampered studies of bulge cells and KSCs. In this study, we determined the distribution of label-retaining cells to define the human anagen bulge. Using navigated laser capture microdissection, bulge cells and outer root sheath cells from other follicle regions were obtained and analyzed with cDNA microarrays. Gene transcripts encoding inhibitors of WNT and activin/bone morphogenic protein signaling were overrepresented in the bulge, while genes responsible for cell proliferation were underrepresented, consistent with the existence of quiescent noncycling KSCs in anagen follicles. Positive markers for bulge cells included CD200, PHLDA1, follistatin, and frizzled homolog 1, while CD24, CD34, CD71, and CD146 were preferentially expressed by non-bulge keratinocytes. Importantly, CD200+ cells (CD200hiCD24loCD34loCD71loCD146lo) obtained from hair follicle suspensions demonstrated high colony-forming efficiency in clonogenic assays, indicating successful enrichment of living human bulge stem cells. The stem cell behavior of enriched bulge cells and their utility for gene therapy and hair regeneration will need to be assessed in in vivo assays.
Manabu Ohyama, Atsushi Terunuma, Christine L. Tock, Michael F. Radonovich, Cynthia A. Pise-Masison, Steven B. Hopping, John N. Brady, Mark C. Udey, Jonathan C. Vogel
Nicotinic acid (niacin) has long been used as an antidyslipidemic drug. Its special profile of actions, especially the rise in HDL-cholesterol levels induced by nicotinic acid, is unique among the currently available pharmacological tools to treat lipid disorders. Recently, a G-protein–coupled receptor, termed GPR109A (HM74A in humans, PUMA-G in mice), was described and shown to mediate the nicotinic acid–induced antilipolytic effects in adipocytes. One of the major problems of the pharmacotherapeutical use of nicotinic acid is a strong flushing response. This side effect, although harmless, strongly affects patient compliance. In the present study, we show that mice lacking PUMA-G did not show nicotinic acid–induced flushing. In addition, flushing in response to nicotinic acid was also abrogated in the absence of cyclooxygenase type 1, and mice lacking prostaglandin D2 (PGD2) and prostaglandin E2 (PGE2) receptors had reduced flushing responses. The mouse orthologue of GPR109A, PUMA-G, is highly expressed in macrophages and other immune cells, and transplantation of wild-type bone marrow into irradiated PUMA-G–deficient mice restored the nicotinic acid–induced flushing response. Our data clearly indicate that GPR109A mediates nicotinic acid–induced flushing and that this effect involves release of PGE2 and PGD2, most likely from immune cells of the skin.
Zoltán Benyó, Andreas Gille, Jukka Kero, Marion Csiky, Marie Catherine Suchánková, Rolf M. Nüsing, Alexandra Moers, Klaus Pfeffer, Stefan Offermanns
Autoantibodies against the epidermal desmosomal cadherins desmoglein 1 (Dsg1) and Dsg3 have been shown to cause severe to lethal skin blistering clinically defined as pemphigus foliaceus (PF) and pemphigus vulgaris (PV). It is unknown whether antibody-induced dissociation of keratinocytes is caused by direct inhibition of Dsg1 transinteraction or by secondary cellular responses. Here we show in an in vitro system that IgGs purified from PF patient sera caused cellular dissociation of cultured human keratinocytes as well as significant release of Dsg1-coated microbeads attached to Dsg-containing sites on the keratinocyte cellular surface. However, cell dissociation and bead release induced by PF-IgGs was not caused by direct steric hindrance of Dsg1 transinteraction, as demonstrated by single molecule atomic force measurements and by laser trapping of surface-bound Dsg1-coated microbeads. Rather, our experiments strongly indicate that PF-IgG–mediated dissociation events must involve autoantibody-triggered cellular signaling pathways, resulting in destabilization of Dsg1-based adhesive sites and desmosomes.
Jens Waschke, Paola Bruggeman, Werner Baumgartner, Detlef Zillikens, Detlev Drenckhahn