Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Cell biology

  • 465 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 46
  • 47
  • Next →
Targeting kinesin family member 20A sensitizes stem-like triple-negative breast cancer cells to standard chemotherapy
Yayoi Adachi, Weilong Chen, Cheng Zhang, Tao Wang, Nina Gildor, Rachel Shi, Haoyong Fu, Masashi Takeda, Qian Liang, Fangzhou Zhao, Hongyi Liu, Jun Fang, Jin Zhou, Hongwei Yao, Lianxin Hu, Shina Li, Lei Guo, Lin Xu, Ling Xie, Xian Chen, Chengheng Liao, Qing Zhang
Yayoi Adachi, Weilong Chen, Cheng Zhang, Tao Wang, Nina Gildor, Rachel Shi, Haoyong Fu, Masashi Takeda, Qian Liang, Fangzhou Zhao, Hongyi Liu, Jun Fang, Jin Zhou, Hongwei Yao, Lianxin Hu, Shina Li, Lei Guo, Lin Xu, Ling Xie, Xian Chen, Chengheng Liao, Qing Zhang
View: Text | PDF

Targeting kinesin family member 20A sensitizes stem-like triple-negative breast cancer cells to standard chemotherapy

  • Text
  • PDF
Abstract

Triple-negative breast cancer (TNBC), being both aggressive and highly lethal, poses a major clinical challenge in terms of treatment. Its heterogeneity and lack of hormone receptors or HER2 expression further restrict the availability of targeted therapy. Breast cancer stem cells (BCSCs), known to fuel TNBC malignancy, are now being exploited as a vulnerability for TNBC treatment. Here, we dissected the transcriptome of BCSCs and identified kinesin family member 20A (KIF20A) as a key regulator of BCSC survival and TNBC tumorigenesis. Genetic depletion or pharmacological inhibition of KIF20A impairs BCSC viability and tumor initiation and development in vitro and in vivo. Mechanistically, KIF20A supports BCSC stemness through modulation of mitochondrial oxidative phosphorylation, which is repressed by SMARCA4, a component of the SWI/SNF chromatin remodeling complex. Therapeutically, KIF20A inhibition sensitizes TNBC xenografts to standard-of-care chemotherapy. Our study highlights the importance of targeting KIF20A to exploit BCSC vulnerabilities in TNBC.

Authors

Yayoi Adachi, Weilong Chen, Cheng Zhang, Tao Wang, Nina Gildor, Rachel Shi, Haoyong Fu, Masashi Takeda, Qian Liang, Fangzhou Zhao, Hongyi Liu, Jun Fang, Jin Zhou, Hongwei Yao, Lianxin Hu, Shina Li, Lei Guo, Lin Xu, Ling Xie, Xian Chen, Chengheng Liao, Qing Zhang

×

Auranofin attenuates TOPBP1-mediated ATR replication stress response and improves chemotherapeutic response in breast tumor models
Shuai Ma, Yingying Han, Rui Gu, Qi Chen, Qiushi Guo, Yuan Yue, Cheng Cao, Ling Liu, Zhenzhen Yang, Yan Qin, Ying Yang, Kai Zhang, Fei Liu, Lin Liu, Na Yang, Jihui Hao, Jie Yang, Zhi Yao, Xiaoyun Mao, Lei Shi
Shuai Ma, Yingying Han, Rui Gu, Qi Chen, Qiushi Guo, Yuan Yue, Cheng Cao, Ling Liu, Zhenzhen Yang, Yan Qin, Ying Yang, Kai Zhang, Fei Liu, Lin Liu, Na Yang, Jihui Hao, Jie Yang, Zhi Yao, Xiaoyun Mao, Lei Shi
View: Text | PDF

Auranofin attenuates TOPBP1-mediated ATR replication stress response and improves chemotherapeutic response in breast tumor models

  • Text
  • PDF
Abstract

Genome instability is most commonly caused by replication stress, which also renders cancer cells extremely vulnerable once their response to replication stress is impeded. Topoisomerase II binding protein 1 (TOPBP1), an allosteric activator of ataxia telangiectasia and Rad3-related kinase (ATR), coordinates ATR in replication stress response and has emerged as a potential therapeutic target for tumors. Here, we identify auranofin, the FDA-approved drug for rheumatoid arthritis, as a lead compound capable of binding to the BRCT 7–8 domains and blocking TOPBP1 interaction with PHF8 and FANCJ. The liquid-liquid phase separation of TOPBP1 is also disrupted by auranofin. Through targeting these TOPBP1-nucleated molecular machineries, auranofin leads to an accumulation of replication defects by impairing ATR activation and attenuating replication protein A loading on perturbed replication forks, and it shows significant anti–breast tumor activity in combination with a PARP inhibitor. This study provides mechanistic insights into how auranofin challenges replication integrity and expands the application of this FDA-approved drug in breast tumor intervention.

Authors

Shuai Ma, Yingying Han, Rui Gu, Qi Chen, Qiushi Guo, Yuan Yue, Cheng Cao, Ling Liu, Zhenzhen Yang, Yan Qin, Ying Yang, Kai Zhang, Fei Liu, Lin Liu, Na Yang, Jihui Hao, Jie Yang, Zhi Yao, Xiaoyun Mao, Lei Shi

×

Structural basis for simvastatin-induced skeletal muscle weakness associated with type 1 ryanodine receptor T4709M mutation
Gunnar Weninger, Haikel Dridi, Steven Reiken, Qi Yuan, Nan Zhao, Linda Groom, Jennifer Leigh, Yang Liu, Carl Tchagou, Jiayi Kang, Alexander Chang, Estefania Luna-Figueroa, Marco C. Miotto, Anetta Wronska, Robert T. Dirksen, Andrew R. Marks
Gunnar Weninger, Haikel Dridi, Steven Reiken, Qi Yuan, Nan Zhao, Linda Groom, Jennifer Leigh, Yang Liu, Carl Tchagou, Jiayi Kang, Alexander Chang, Estefania Luna-Figueroa, Marco C. Miotto, Anetta Wronska, Robert T. Dirksen, Andrew R. Marks
View: Text | PDF

Structural basis for simvastatin-induced skeletal muscle weakness associated with type 1 ryanodine receptor T4709M mutation

  • Text
  • PDF
Abstract

Statins lower cholesterol, reducing the risk of heart disease, and are among the most frequently prescribed drugs. Approximately 10% of individuals develop statin-associated muscle symptoms (SAMS; myalgias, rhabdomyolysis, and muscle weakness), often rendering them statin intolerant. The mechanism underlying SAMS remains poorly understood. Patients with mutations in the skeletal muscle ryanodine receptor 1 (RyR1)/calcium release channel can be particularly intolerant of statins. High-resolution structures revealed simvastatin binding sites in the pore region of RyR1. Simvastatin stabilized the open conformation of the pore and activated the RyR1 channel. In a mouse expressing a mutant RyR1-T4709M found in a patient with profound statin intolerance, simvastatin caused muscle weakness associated with leaky RyR1 channels. Cotreatment with a Rycal drug that stabilizes the channel closed state prevented simvastatin-induced muscle weakness. Thus, statin binding to RyR1 can cause SAMS, and patients with RyR1 mutations may represent a high-risk group for statin intolerance.

Authors

Gunnar Weninger, Haikel Dridi, Steven Reiken, Qi Yuan, Nan Zhao, Linda Groom, Jennifer Leigh, Yang Liu, Carl Tchagou, Jiayi Kang, Alexander Chang, Estefania Luna-Figueroa, Marco C. Miotto, Anetta Wronska, Robert T. Dirksen, Andrew R. Marks

×

Leukemia-expanded splenic CD81+ erythroblasts potentiate disease progression in mice by reshaping leukemic cell metabolism
Yue Li, Jiaxuan Cao, Jingyuan Tong, Peixia Tang, Haoran Chen, Guohuan Sun, Zining Yang, Xiaoru Zhang, Fang Dong, Shangda Yang, Jie Gao, Xiangnan Zhao, Jinfa Ma, Di Wang, Lei Zhang, Lin Wang, Tao Cheng, Hui Cheng, Lihong Shi
Yue Li, Jiaxuan Cao, Jingyuan Tong, Peixia Tang, Haoran Chen, Guohuan Sun, Zining Yang, Xiaoru Zhang, Fang Dong, Shangda Yang, Jie Gao, Xiangnan Zhao, Jinfa Ma, Di Wang, Lei Zhang, Lin Wang, Tao Cheng, Hui Cheng, Lihong Shi
View: Text | PDF

Leukemia-expanded splenic CD81+ erythroblasts potentiate disease progression in mice by reshaping leukemic cell metabolism

  • Text
  • PDF
Abstract

During the progression of acute myeloid leukemia (AML), extramedullary hematopoiesis (EMH) compensates for impaired bone marrow hematopoiesis. However, the specific cellular dynamics of EMH and its influence on AML progression remain poorly understood. In this study, we identified a substantial expansion of the CD81+ erythroblast subpopulation (CD81+ Erys) in the spleens of AML mice, which promoted AML cell proliferation and reduced survival. Mechanistically, CD81+ Erys secrete elevated levels of macrophage migration-inhibitory factor (MIF), which interacted with the CD74 receptor on AML cells, activating the mTORC1 signaling pathway and upregulating Egln3. Consequently, AML cells cocultured with CD81+ Erys exhibited reprogrammed phospholipid metabolism, characterized by an increased phospholipid-to-lysophospholipid ratio. Modulating this metabolic shift, either by supplementing exogenous lysophospholipids or depleting Egln3 in AML cells, restored the phospholipid balance and mitigated the protumorigenic effects induced by CD81+ Erys. Overall, our findings elucidate the molecular crosstalk between erythroblasts and AML cells, extend our insights into the mechanisms driving AML progression, and suggest potential therapeutic strategies.

Authors

Yue Li, Jiaxuan Cao, Jingyuan Tong, Peixia Tang, Haoran Chen, Guohuan Sun, Zining Yang, Xiaoru Zhang, Fang Dong, Shangda Yang, Jie Gao, Xiangnan Zhao, Jinfa Ma, Di Wang, Lei Zhang, Lin Wang, Tao Cheng, Hui Cheng, Lihong Shi

×

HDAC5 deficiency induces intrinsic resistance to KRAS inhibition by disrupting c-Myc acetylation-ubiquitination homeostasis
Taoyu Chen, Haixin Yu, Keshan Wang, Gengdu Qin, Yuhan Zhao, Xueyi Liang, Yuxuan Li, Tianhao Zou, Jiaying Liu, Jingyuan Zhao, Zhiqiang Liu, Ruozheng Wei, Bo Wang, Shanmiao Gou, Tao Yin, Heshui Wu, Xin Jin, Yingke Zhou
Taoyu Chen, Haixin Yu, Keshan Wang, Gengdu Qin, Yuhan Zhao, Xueyi Liang, Yuxuan Li, Tianhao Zou, Jiaying Liu, Jingyuan Zhao, Zhiqiang Liu, Ruozheng Wei, Bo Wang, Shanmiao Gou, Tao Yin, Heshui Wu, Xin Jin, Yingke Zhou
View: Text | PDF

HDAC5 deficiency induces intrinsic resistance to KRAS inhibition by disrupting c-Myc acetylation-ubiquitination homeostasis

  • Text
  • PDF
Abstract

KRAS mutations serve as key oncogenic drivers in the initiation and progression of pancreatic ductal adenocarcinoma (PDAC). Despite the advancement of KRAS inhibitors like MRTX1133 for PDAC treatment, intrinsic and acquired resistance remain major barriers to their clinical efficacy. This study underscored the role of histone deacetylase 5 (HDAC5) loss in mediating intrinsic resistance to KRASG12D inhibitors. Mechanistically, HDAC5 promoted c-Myc degradation by deacetylating K148, thereby facilitating NEDD4-mediated ubiquitination at this site. The loss of HDAC5 resulted in hyperacetylation of c-Myc at K148, impeding the ubiquitination and subsequent degradation process of c-Myc following deacetylation. Consequently, c-Myc stability and transcriptional activity were sustained even under KRAS-MEK-ERK pathway inhibition, reinforcing MAPK signaling and promoting cell survival despite KRAS suppression. Our data further demonstrated that pharmacological or genetic inhibition of c-Myc effectively reversed the resistance phenotype mediated by HDAC5 loss, suggesting a therapeutic strategy centered on "KRAS-MYC dual-node blockade." Furthermore, the expression levels of HDAC5 and the acetylation status of c-Myc may serve as potential biomarkers for predicting the therapeutic response to MRTX1133. These findings provide insights into overcoming resistance to KRASG12D inhibitors and offer potential biomarkers and combinatorial therapeutic strategies for precision treatment of PDAC.

Authors

Taoyu Chen, Haixin Yu, Keshan Wang, Gengdu Qin, Yuhan Zhao, Xueyi Liang, Yuxuan Li, Tianhao Zou, Jiaying Liu, Jingyuan Zhao, Zhiqiang Liu, Ruozheng Wei, Bo Wang, Shanmiao Gou, Tao Yin, Heshui Wu, Xin Jin, Yingke Zhou

×

Osimertinib activates a TGFβ2-dependent secretory program that drives lung adenocarcinoma progression
Madhurima Ghosh, Chao Wu, Abhishek Kumar, Monique B. Nilsson, John V. Heymach, Weina Zhao, Jiang Yu, Xin Liu, Na Ding, Shike Wang, Guan-Yu Xiao, Angelo Chen, Kate V. Grimley, William K. Russell, Chad J. Creighton, Xiaochao Tan, Jonathan M. Kurie
Madhurima Ghosh, Chao Wu, Abhishek Kumar, Monique B. Nilsson, John V. Heymach, Weina Zhao, Jiang Yu, Xin Liu, Na Ding, Shike Wang, Guan-Yu Xiao, Angelo Chen, Kate V. Grimley, William K. Russell, Chad J. Creighton, Xiaochao Tan, Jonathan M. Kurie
View: Text | PDF

Osimertinib activates a TGFβ2-dependent secretory program that drives lung adenocarcinoma progression

  • Text
  • PDF
Abstract

EGFR-mutant lung adenocarcinomas (LUADs) that are vulnerable to the EGFR antagonist Osimertinib (Osi) eventually relapse owing in part to the emergence of drug tolerant persister (DTP) cells that arise through epigenetic mechanisms. Intra-tumoral DTP cells can herald a worse clinical outcome, but the way in which DTP cells influence LUAD progression remains unclear. Osi-resistant (OR) cells exhibit typical DTP cell features, including a propensity to undergo senescence and epithelial-to-mesenchymal transition (EMT), which can activate heightened secretory states. Therefore, we postulated that OR cells influence LUAD progression through paracrine mechanisms. To test this hypothesis, we utilized congenic pairs of EGFR-mutant LUAD cell lines in which drug naive (DN) cells were rendered OR by chronic exposure to escalating doses of Osi. Co-cultured in vitro or co-injected into mice, paracrine signals from OR cells enhanced the growth and metastatic properties of DN cells. EMT and senescence activated non-overlapping secretomes, and OR cells governed DN cells by undergoing EMT but not senescence. Mechanistically, Osi rapidly increased TGFβ2 levels to initiate EMT, which triggered a Golgi remodeling process that accelerated the biogenesis and anterograde trafficking of secretory vesicles. The pro-tumorigenic activity of OR cells was diminished by depletion of EMT-dependent secreted proteins or the EMT-activating transcription factor ZEB1. These findings identify paracrine mechanisms by which OR cells drive LUAD progression.

Authors

Madhurima Ghosh, Chao Wu, Abhishek Kumar, Monique B. Nilsson, John V. Heymach, Weina Zhao, Jiang Yu, Xin Liu, Na Ding, Shike Wang, Guan-Yu Xiao, Angelo Chen, Kate V. Grimley, William K. Russell, Chad J. Creighton, Xiaochao Tan, Jonathan M. Kurie

×

Oncogenic KRAS/ERK/JUNB signaling suppresses differentiation regulator GATA6 in pancreatic cancer
Zheng Zhong, Xinang Cao, Pei-Ju Liao, Raman Sethi, Jeffrey A. Klomp, Clint A. Stalnecker, Jinmiao Chen, Yue Wan, Channing J. Der, David M. Virshup
Zheng Zhong, Xinang Cao, Pei-Ju Liao, Raman Sethi, Jeffrey A. Klomp, Clint A. Stalnecker, Jinmiao Chen, Yue Wan, Channing J. Der, David M. Virshup
View: Text | PDF

Oncogenic KRAS/ERK/JUNB signaling suppresses differentiation regulator GATA6 in pancreatic cancer

  • Text
  • PDF
Abstract

GATA6 is a master regulator of differentiation in the pancreas and its expression levels determine the two main molecular subtypes of pancreatic cancer. High GATA6 contributes to the “classical” pancreatic cancer subtype, which is associated with a higher degree of tumor differentiation and better disease prognosis. However, why GATA6 expression varies across pancreatic cancers and what regulate GATA6 expression remain elusive. Here we report that the oncogenic KRAS-activated ERK signaling suppresses GATA6 transcription in pancreatic cancers. GATA6 mRNA levels inversely correlated with KRAS/ERK activity in pancreatic tumors. A genome-wide CRISPR screen in a GATA6-EGFP reporter knockin cell line identified JUNB as the ERK-regulated transcriptional repressor for GATA6. Active ERK stabilizes JUNB protein while KRAS/ERK inhibition led to ubiquitin-independent proteasomal degradation of JUNB and increased transcription of GATA6. Up-regulation of GATA6 enhanced chemosensitivity of pancreatic cancer cells and KRAS/ERK inhibitors synergized with chemotherapy in a GATA6-dependent manner. Our study identifies how oncogenic KRAS/ERK signaling suppresses GATA6 to cause dedifferentiation in pancreatic cancer. Combining KRAS/ERK inhibitors with standard-of-care chemotherapies could be a promising therapeutic strategy for treating pancreatic cancers.

Authors

Zheng Zhong, Xinang Cao, Pei-Ju Liao, Raman Sethi, Jeffrey A. Klomp, Clint A. Stalnecker, Jinmiao Chen, Yue Wan, Channing J. Der, David M. Virshup

×

Chronic stress-induced ANPEP drives liver cancer progression by increasing glutathione synthesis and inhibiting ferroptosis
Yongkang Wu, Yankun Zhang, Xiaojia Shi, Mengting Wu, Min Sun, Ying Feng, Wenmeng Ma, Xiule Jiang, Dingqi Fei, Mingjian Zhao, Zhuanchang Wu, Chunyang Li, Xiaohong Liang, Lifen Gao, Chunhong Ma, Xuetian Yue
Yongkang Wu, Yankun Zhang, Xiaojia Shi, Mengting Wu, Min Sun, Ying Feng, Wenmeng Ma, Xiule Jiang, Dingqi Fei, Mingjian Zhao, Zhuanchang Wu, Chunyang Li, Xiaohong Liang, Lifen Gao, Chunhong Ma, Xuetian Yue
View: Text | PDF

Chronic stress-induced ANPEP drives liver cancer progression by increasing glutathione synthesis and inhibiting ferroptosis

  • Text
  • PDF
Abstract

Emerging evidence demonstrates that chronic stress alters immunological, neurochemical and endocrinological functions, thereby promoting tumor progression. However, the underlying metabolic mechanism of chronic stress in tumor progression is still elusive. Using multi-omics analysis, we found that aminopeptidase N (ANPEP) was upregulated in tumors with chronic restraint, associating with the reprogramming of amino acid metabolism. Functional assays revealed that ANPEP promoted liver cancer growth and metastasis. Knockdown of ANPEP blocked chronic stress-induced liver cancer progression. Chronic stress-induced glucocorticoids promoted nuclear receptor subfamily 3 group C member 1 (NR3C1) nuclear translocation to activate ANPEP transcription by directly binding to its promoter. Furthermore, ANPEP promotes glutathione synthesis, subsequently inhibiting reactive oxygen species (ROS)-induced ferroptosis. Mechanistically, ANPEP interacted with solute carrier family 3 member 2 (SLC3A2) to block membrane associated ring-CH-type finger 8-mediated (MARCH8-mediated) lysosome-dependent degradation of SLC3A2, promoting intracellular L-cystine transport, thereby increasing glutathione synthesis. The combination of ANPEP silencing and sorafenib treatment showed a synergistic effect in inhibiting liver cancer progression. Finally, clinical data and mouse models demonstrated that chronic stress drove liver tumor progression via ANPEP-regulated SLC3A2. These findings reveal unanticipated communication between chronic stress and metabolic reprogramming during liver cancer progression, providing potential therapeutic implications for liver cancer.

Authors

Yongkang Wu, Yankun Zhang, Xiaojia Shi, Mengting Wu, Min Sun, Ying Feng, Wenmeng Ma, Xiule Jiang, Dingqi Fei, Mingjian Zhao, Zhuanchang Wu, Chunyang Li, Xiaohong Liang, Lifen Gao, Chunhong Ma, Xuetian Yue

×

LC3-dependent intercellular transfer of phosphorylated STAT1/2 elicits CXCL9+ macrophages and enhances radiation-induced antitumor immunity
Jun-Yan Li, Ying-Qing Li, Jia-Hao Dai, Sha Gong, Qing-Mei He, Jie-Wen Bai, Sai-Wei Huang, Ying-Qi Lu, Yu-Fei Duan, Sen-Yu Feng, Xi-Rong Tan, Xiao-Yu Liang, Jun Ma, Rui Guo, Na Liu
Jun-Yan Li, Ying-Qing Li, Jia-Hao Dai, Sha Gong, Qing-Mei He, Jie-Wen Bai, Sai-Wei Huang, Ying-Qi Lu, Yu-Fei Duan, Sen-Yu Feng, Xi-Rong Tan, Xiao-Yu Liang, Jun Ma, Rui Guo, Na Liu
View: Text | PDF

LC3-dependent intercellular transfer of phosphorylated STAT1/2 elicits CXCL9+ macrophages and enhances radiation-induced antitumor immunity

  • Text
  • PDF
Abstract

The efficacy of anticancer treatments, including radiotherapy, depends on the activation of type I IFN signaling. However, its regulatory networks and mechanisms remain to be elucidated. Here, we report that tumor cell–intrinsic type I IFN signaling can be transferred to macrophages via secretory autophagy, inducing CXCL9hi macrophages and enhancing CD8+ T cell–mediated antitumor immunity. Mechanistically, K63-linked ubiquitination at the K167 site of phosphorylated STAT2 (p-STAT2) facilitates its binding to LC3B, promoting the loading of p-STAT1 and p-STAT2 into extracellular vesicles and intercellular transference from tumor cells to macrophages, which, however, is suppressed by USP5-mediated STAT2 deubiquitination. Genetic depletion or pharmacological inhibition of USP5 promotes autophagy-dependent unconventional protein secretion of p-STAT1 and p-STAT2, leading to the induction of CXCL9+ macrophages. This process promotes the expression of T cell chemokines and upregulates the antigen presentation machinery, thereby enhancing radiation-induced CD8+ T cell antitumor immunity and radiotherapy efficacy. Our findings reveal a critical role of USP5 in type I IFN–induced antitumor immunity, providing potential targets for improving the efficacy of radiotherapy.

Authors

Jun-Yan Li, Ying-Qing Li, Jia-Hao Dai, Sha Gong, Qing-Mei He, Jie-Wen Bai, Sai-Wei Huang, Ying-Qi Lu, Yu-Fei Duan, Sen-Yu Feng, Xi-Rong Tan, Xiao-Yu Liang, Jun Ma, Rui Guo, Na Liu

×

Limiting ER-associated degradation capacity triggers acute and chronic effects on insulin biosynthesis
Anoop Arunagiri, Leena Haataja, Maroof Alam, Noah F. Gleason, Emma Mastroianni, Chao-Yin Cheng, Sami Bazzi Onton, Jeffrey Knupp, Ibrahim Metawea, Anis Hassan, Dennis Larkin, Deyu Fang, Billy Tsai, Ling Qi, Peter Arvan
Anoop Arunagiri, Leena Haataja, Maroof Alam, Noah F. Gleason, Emma Mastroianni, Chao-Yin Cheng, Sami Bazzi Onton, Jeffrey Knupp, Ibrahim Metawea, Anis Hassan, Dennis Larkin, Deyu Fang, Billy Tsai, Ling Qi, Peter Arvan
View: Text | PDF

Limiting ER-associated degradation capacity triggers acute and chronic effects on insulin biosynthesis

  • Text
  • PDF
Abstract

In pancreatic β-cells, misfolded proinsulin is a substrate for Endoplasmic Reticulum-Associated protein Degradation (ERAD) via HRD1/SEL1L. β-cell HRD1 activity is alternately reported to improve, or impair, insulin biogenesis. Further, while β-cell SEL1L deficiency causes HRD1 hypofunction and diminishes islet insulin content; reports conflict as to whether β-cell ERAD deficiency increases or decreases proinsulin levels. Here we’ve examined β-cell-specific Hrd1-KO mice (chronic deficiency), plus rodent (and human islet) β-cells treated acutely with HRD1 inhibitor. β-Hrd1-KO mice developed diabetes with decreased islet proinsulin yet a relative increase of misfolded proinsulin re-distributed to the ER; upregulated biochemical markers of β-cell ER stress and autophagy; electron microscopic evidence of ER enlargement and decreased insulin granule content; and increased glucagon-positive islet cells. Misfolded proinsulin was also increased in islets treated with inhibitors of lysosomal degradation. Preceding any loss of total proinsulin, acute HRD1 inhibition triggered increased nonnative proinsulin, increased phospho-eIF2ɑ with inhibited proinsulin synthesis, and increased LC3b-II (the abundance of which requires expression of SigmaR1). We posit a subset of proinsulin molecules undergoes HRD1-mediated disposal. When HRD1 is unavailable, misfolded proinsulin accumulates, accompanied by increased phospho-eIF2ɑ that limits further proinsulin synthesis, plus SigmaR1-dependent autophagy activation, ultimately lowering steady-state β-cell proinsulin (and insulin) levels — triggering diabetes.

Authors

Anoop Arunagiri, Leena Haataja, Maroof Alam, Noah F. Gleason, Emma Mastroianni, Chao-Yin Cheng, Sami Bazzi Onton, Jeffrey Knupp, Ibrahim Metawea, Anis Hassan, Dennis Larkin, Deyu Fang, Billy Tsai, Ling Qi, Peter Arvan

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 46
  • 47
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts