Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Autoimmunity

  • 268 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 26
  • 27
  • Next →
Altered immune and metabolic molecular pathways drive islet cell dysfunction in human type 1 diabetes
Theodore dos Santos, Xiao-Qing Dai, Robert C. Jones, Aliya F. Spigelman, Hannah M. Mummey, Jessica D. Ewald, Cara E. Ellis, James G. Lyon, Nancy Smith, Austin Bautista, Jocelyn E. Manning Fox, Norma F. Neff, Angela M. Detweiler, Michelle Tan, Rafael Arrojo e Drigo, Jianguo Xia, Joan Camunas-Soler, Kyle J. Gaulton, Stephen R. Quake, Patrick E. MacDonald
Theodore dos Santos, Xiao-Qing Dai, Robert C. Jones, Aliya F. Spigelman, Hannah M. Mummey, Jessica D. Ewald, Cara E. Ellis, James G. Lyon, Nancy Smith, Austin Bautista, Jocelyn E. Manning Fox, Norma F. Neff, Angela M. Detweiler, Michelle Tan, Rafael Arrojo e Drigo, Jianguo Xia, Joan Camunas-Soler, Kyle J. Gaulton, Stephen R. Quake, Patrick E. MacDonald
View: Text | PDF

Altered immune and metabolic molecular pathways drive islet cell dysfunction in human type 1 diabetes

  • Text
  • PDF
Abstract

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of most insulin-producing β-cells, along with dysregulated glucagon secretion from pancreatic α-cells. We conducted an integrated analysis that combines electrophysiological and transcriptomic profiling, along with machine learning, of islet cells from T1D donors. The few surviving β-cells exhibit altered electrophysiological properties and transcriptomic signatures indicative of increased antigen presentation, metabolic reprogramming, and impaired protein translation. In α-cells, we observed hyper-responsiveness and increased exocytosis, which are associated with upregulated immune signaling, disrupted transcription factor localization and lysosome homeostasis, as well as dysregulation of mTORC1 complex signaling. Notably, key genetic risk signals for T1D were enriched in transcripts related to α-cell dysfunction, including MHC class I, which were closely linked with α-cell dysfunction. Our data provide what we believe are novel insights into the molecular underpinnings of islet cell dysfunction in T1D, highlighting pathways that may be leveraged to preserve residual β-cell function and modulate α-cell activity. These findings underscore the complex interplay between immune signaling, metabolic stress, and cellular identity in shaping islet cell phenotypes in T1D.

Authors

Theodore dos Santos, Xiao-Qing Dai, Robert C. Jones, Aliya F. Spigelman, Hannah M. Mummey, Jessica D. Ewald, Cara E. Ellis, James G. Lyon, Nancy Smith, Austin Bautista, Jocelyn E. Manning Fox, Norma F. Neff, Angela M. Detweiler, Michelle Tan, Rafael Arrojo e Drigo, Jianguo Xia, Joan Camunas-Soler, Kyle J. Gaulton, Stephen R. Quake, Patrick E. MacDonald

×

CTLA-4 blockade shifts the B cell repertoire towards autoimmunity
Elif Çakan, Meng Wang, Yile Dai, Adrien Mirouse, Clarence Rachel Villanueva-Pachas, Delphine Bouis, Joshua M. Boeckers, Ruchi Gera, Sally Yraita, Leslie Clapp, Ana Luisa Perdigoto, Fabien R. Delmotte, Christopher Massad, Antonietta Bacchiocchi, Aaron M. Ring, Yuval Kluger, Harriet M. Kluger, Kevan C. Herold, Eric Meffre
Elif Çakan, Meng Wang, Yile Dai, Adrien Mirouse, Clarence Rachel Villanueva-Pachas, Delphine Bouis, Joshua M. Boeckers, Ruchi Gera, Sally Yraita, Leslie Clapp, Ana Luisa Perdigoto, Fabien R. Delmotte, Christopher Massad, Antonietta Bacchiocchi, Aaron M. Ring, Yuval Kluger, Harriet M. Kluger, Kevan C. Herold, Eric Meffre
View: Text | PDF

CTLA-4 blockade shifts the B cell repertoire towards autoimmunity

  • Text
  • PDF
Abstract

Checkpoint inhibitors targeting CTLA-4 and PD-1 revolutionized the treatment of cancer patients, but their use is limited by the emergence of immune-related adverse events (irAE). We assessed autoreactive B cell frequencies in the blood of cancer patients before and after treatment with checkpoint inhibitors by testing the reactivity of recombinant antibodies cloned from single B cells. We found that anti-PD-1 and anti-CTLA-4 combination therapy induced the emergence of autoreactive mature naïve B cells, whereas central B-cell tolerance remained functional. In contrast, anti-PD-1 alone did not alter autoreactive B cell counterselection. Anti-CTLA-4 injections in humanized mice also resulted in the production of autoreactive B cells, whereas anti-PD-1 did not. We conclude that CTLA-4 but not PD-1 is required for the removal of developing autoreactive mature naïve B cells and that CTLA-4 blockade broadens the peripheral B cell repertoire which likely contains clones that promote not only irAEs but also anti-tumor responses.

Authors

Elif Çakan, Meng Wang, Yile Dai, Adrien Mirouse, Clarence Rachel Villanueva-Pachas, Delphine Bouis, Joshua M. Boeckers, Ruchi Gera, Sally Yraita, Leslie Clapp, Ana Luisa Perdigoto, Fabien R. Delmotte, Christopher Massad, Antonietta Bacchiocchi, Aaron M. Ring, Yuval Kluger, Harriet M. Kluger, Kevan C. Herold, Eric Meffre

×

Immune cell quantification of in situ inflammation partitions human lupus nephritis into mechanistic subtypes
Gabriel Casella, Madeleine S. Torcasso, Junting Ai, Thao P. Cao, Satoshi Hara, Michael S. Andrade, Deepjyoti Ghosh, Daming Shao, Anthony Chang, Kichul Ko, Anita S. Chong, Maryellen L. Giger, Marcus R. Clark
Gabriel Casella, Madeleine S. Torcasso, Junting Ai, Thao P. Cao, Satoshi Hara, Michael S. Andrade, Deepjyoti Ghosh, Daming Shao, Anthony Chang, Kichul Ko, Anita S. Chong, Maryellen L. Giger, Marcus R. Clark
View: Text | PDF

Immune cell quantification of in situ inflammation partitions human lupus nephritis into mechanistic subtypes

  • Text
  • PDF
Abstract

BACKGROUND. In human lupus nephritis (LuN), tubulointerstitial inflammation (TII) is prognostically more important than glomerular inflammation. However, a comprehensive understanding of both TII complexity and heterogeneity is lacking. METHODS. Herein, we used high-dimensional confocal microscopy, spatial transcriptomics and specialized computer vision techniques to quantify immune cell populations and localize these within normal and diseased renal cortex structures. With these tools, we compared LuN to renal allograft rejection (RAR) and normal kidney on 54 de-identified biopsies. RESULTS. In both LuN and RAR, the 33 characterized immune cell populations formed discrete subgroups whose constituents co-varied in prevalence across biopsies. In both diseases, these co-variant immune cell subgroups organized into the same unique niches. Therefore, inflammation could be resolved into trajectories representing the relative prevalence and density of cardinal immune cell members of each co-variant subgroup. Indeed, in any one biopsy, the inflammatory state could be characterized by quantifying constituent immune cell trajectories. Remarkably, LuN heterogeneity could be captured by quantifying a few myeloid immune cell trajectories while RAR was more complex with additional T cell trajectories. CONCLUSIONS. Our studies identify rules governing renal inflammation and thus provide an approach for resolving LuN into discrete mechanistic categories. FUNDING. NIH (U19 AI 082724 [MRC], R01 AI148705 [MRC and ASC]), Chan Zuckerberg Biohub (MRC) and Lupus Research Alliance (MRC)

Authors

Gabriel Casella, Madeleine S. Torcasso, Junting Ai, Thao P. Cao, Satoshi Hara, Michael S. Andrade, Deepjyoti Ghosh, Daming Shao, Anthony Chang, Kichul Ko, Anita S. Chong, Maryellen L. Giger, Marcus R. Clark

×

Divergent TIR signaling domains in TLR7 and TLR9 control opposing effects on systemic autoimmunity
Claire Leibler, Kayla B. Thomas, Coralie Josensi, Russell C. Levack, Shuchi Smita, Shinu John, Daniel J. Wikenheiser, Sheldon Bastacky, Sebastien Gingras, Kevin M. Nickerson, Mark J. Shlomchik
Claire Leibler, Kayla B. Thomas, Coralie Josensi, Russell C. Levack, Shuchi Smita, Shinu John, Daniel J. Wikenheiser, Sheldon Bastacky, Sebastien Gingras, Kevin M. Nickerson, Mark J. Shlomchik
View: Text | PDF

Divergent TIR signaling domains in TLR7 and TLR9 control opposing effects on systemic autoimmunity

  • Text
  • PDF
Abstract

Toll like receptor (TLR) 7 and 9, endosomal sensors for RNA and DNA, are key mediators of autoreactivity. Although generally considered homologous, they paradoxically have opposing effects on lupus: TLR7 exacerbates disease while TLR9 protects from disease. How they mediate opposing effects in autoimmunity remains undetermined. We hypothesized that differences in signaling qualities of the Toll-Interleukin 1 Receptor (TIR) domains of TLR7 and TLR9 could be responsible for their opposing effects. To test this, we introduced the TIR domain of TLR9 into the endogenous TLR7 locus and the TLR7 TIR domain into the endogenous TLR9 locus of mice, creating chimeric molecules termed TLR779 and TLR997. Lupus-prone MRL/lpr mice carrying Tlr779 had greatly ameliorated disease while MRL/lpr mice carrying Tlr997 had markedly exacerbated disease compared to respective TlrWT mice. These experiments establish that TLR7 and TLR9 TIR domains have divergent properties and control disease quality, thus explaining the longstanding “TLR paradox.”

Authors

Claire Leibler, Kayla B. Thomas, Coralie Josensi, Russell C. Levack, Shuchi Smita, Shinu John, Daniel J. Wikenheiser, Sheldon Bastacky, Sebastien Gingras, Kevin M. Nickerson, Mark J. Shlomchik

×

ST8Sia6 overexpression protects pancreatic β cells from spontaneous autoimmune diabetes in nonobese diabetic mice
Justin Choe, Paul Belmonte, Sydney Crotts, Thanh Nguyen, David Friedman, Alexi Zastrow, Matthew Rajcula, Brady Hammer, Claire Wilhelm, Michael J. Shapiro, Aleksey Matveyenko, Virginia Smith Shapiro
Justin Choe, Paul Belmonte, Sydney Crotts, Thanh Nguyen, David Friedman, Alexi Zastrow, Matthew Rajcula, Brady Hammer, Claire Wilhelm, Michael J. Shapiro, Aleksey Matveyenko, Virginia Smith Shapiro
View: Text | PDF

ST8Sia6 overexpression protects pancreatic β cells from spontaneous autoimmune diabetes in nonobese diabetic mice

  • Text
  • PDF
Abstract

Type 1 diabetes is characterized by the autoimmune destruction of pancreatic β cells, resulting in permanent loss of glucose homeostasis. Islet transplantation is a promising potential cure that remains hindered by immune rejection. We previously showed that ST8Sia6 expression on tumors reduced immune surveillance and hypothesized that this sialyltransferase could protect β cells from autoimmune destruction. Here, we demonstrate that ectopic expression of ST8Sia6 in β cells of female nonobese diabetic mice (NOD βST) decreased the spontaneous incidence of diabetes by 90% and preserved β cell mass. NOD βST mice had comparable insulitis at 8 weeks of age that did not progress over time compared with littermate controls. β Cell–autoreactive B and T cells were present in NOD βST mice, indicating a peripheral rather than central mechanism of immune tolerance. The islets of NOD βST mice displayed a dampened type 1 immune response and reduced IL-12p35 expression in dendritic cells compared with those of littermate controls. The peripheral protection persisted even after removal of ST8Sia6 expression at 20 weeks of age, indicating that transient expression was sufficient for establishment of tolerance. These results demonstrate that ST8Sia6 protects β cells from immune-mediated attack and rejection, highlighting its therapeutic potential for autoimmune disorders.

Authors

Justin Choe, Paul Belmonte, Sydney Crotts, Thanh Nguyen, David Friedman, Alexi Zastrow, Matthew Rajcula, Brady Hammer, Claire Wilhelm, Michael J. Shapiro, Aleksey Matveyenko, Virginia Smith Shapiro

×

Gut-specific histamine 3 receptor signaling orchestrates microglia-dependent resolution of peripheral inflammation
Kerstin Dürholz, Leona Ehnes, Mathias Linnerbauer, Eva Schmid, Heike Danzer, Michael Hinzpeter-Schmidt, Lena Lößlein, Lena Amend, Michael Frech, Vugar Azizov, Fabian Schälter, Arne Gessner, Sébastien Lucas, Till-Robin Lesker, R. Verena Taudte, Jörg Hofmann, Felix Beyer, Hadar Bootz-Maoz, Yasmin Reich, Hadar Romano, Daniele Mauro, Ruth Beckervordersandforth, Maja Skov Kragsnaes, Torkell Ellingsen, Wei Xiang, Aiden Haghikia, Cezmi A. Akdis, Francesco Ciccia, Tobias Bäuerle, Kerstin Sarter, Till Strowig, Nissan Yissachar, Georg Schett, Veit Rothhammer, Mario M. Zaiss
Kerstin Dürholz, Leona Ehnes, Mathias Linnerbauer, Eva Schmid, Heike Danzer, Michael Hinzpeter-Schmidt, Lena Lößlein, Lena Amend, Michael Frech, Vugar Azizov, Fabian Schälter, Arne Gessner, Sébastien Lucas, Till-Robin Lesker, R. Verena Taudte, Jörg Hofmann, Felix Beyer, Hadar Bootz-Maoz, Yasmin Reich, Hadar Romano, Daniele Mauro, Ruth Beckervordersandforth, Maja Skov Kragsnaes, Torkell Ellingsen, Wei Xiang, Aiden Haghikia, Cezmi A. Akdis, Francesco Ciccia, Tobias Bäuerle, Kerstin Sarter, Till Strowig, Nissan Yissachar, Georg Schett, Veit Rothhammer, Mario M. Zaiss
View: Text | PDF

Gut-specific histamine 3 receptor signaling orchestrates microglia-dependent resolution of peripheral inflammation

  • Text
  • PDF
Abstract

Chronic inflammatory diseases, like rheumatoid arthritis (RA) have been described to cause central nervous system (CNS) activation. Less is known about environmental factors that enable the CNS to suppress peripheral inflammation in RA. Here, we identified gut microbiota-derived histamine as such factor. We show that low levels of histamine activate the enteric nervous system, increase inhibitory neurotransmitter concentrations in the spinal cord and restore homeostatic microglia, thereby reducing inflammation in the joints. Selective histamine 3 receptor (H3R) signaling in the intestine is critical for this effect, as systemic and intrathecal application did not show effects. Microglia depletion or pharmacological silencing of local nerve fibers impaired oral H3R agonist-induced pro-resolving effects on arthritis. Moreover, therapeutic supplementation of the short-chain fatty acid (SCFA) propionate identified one way to expand local intestinal histamine concentrations in mice and humans. Thus, we define a gut-CNS-joint axis pathway where microbiota-derived histamine initiates the resolution of arthritis via the CNS.

Authors

Kerstin Dürholz, Leona Ehnes, Mathias Linnerbauer, Eva Schmid, Heike Danzer, Michael Hinzpeter-Schmidt, Lena Lößlein, Lena Amend, Michael Frech, Vugar Azizov, Fabian Schälter, Arne Gessner, Sébastien Lucas, Till-Robin Lesker, R. Verena Taudte, Jörg Hofmann, Felix Beyer, Hadar Bootz-Maoz, Yasmin Reich, Hadar Romano, Daniele Mauro, Ruth Beckervordersandforth, Maja Skov Kragsnaes, Torkell Ellingsen, Wei Xiang, Aiden Haghikia, Cezmi A. Akdis, Francesco Ciccia, Tobias Bäuerle, Kerstin Sarter, Till Strowig, Nissan Yissachar, Georg Schett, Veit Rothhammer, Mario M. Zaiss

×

Activated STING in the thymic epithelium alters T cell development and selection leading to autoimmunity
Zimu Deng, Christopher S. Law, Santosh Kurra, Noa Simchoni, Anthony K. Shum
Zimu Deng, Christopher S. Law, Santosh Kurra, Noa Simchoni, Anthony K. Shum
View: Text | PDF

Activated STING in the thymic epithelium alters T cell development and selection leading to autoimmunity

  • Text
  • PDF
Abstract

COPA syndrome is a monogenic disorder of immune dysregulation that leads to interstitial lung disease and high-titer autoantibodies. Constitutive activation of the innate immune molecule STING is centrally involved in disease. However, the mechanisms by which STING results in autoimmunity is not well understood in COPA syndrome and other STING-associated diseases. Prior studies show a cell autonomous role for STING in thymocyte development. Single cell data of human thymus demonstrates STING is highly expressed in medullary thymic epithelial cells (mTECs) and at levels much greater than T cells. Here, we show that in certain contexts activated STING exerts a functional role in the thymic epithelium to alter thymocyte selection and predisposes to autoimmunity. In CopaE241K/+ mice, activated STING in mTECs amplified interferon signaling, impaired macroautophagy and caused a defect in negative selection of T cell precursors. Wild-type mice given a systemic STING agonist phenocopied the selection defect and showed enhanced thymic escape of a T cell clone targeting a self-antigen also expressed in melanoma. Our work demonstrates STING activation in TECs shapes the T cell repertoire and contributes to autoimmunity, findings important for conditions that activate thymic STING.

Authors

Zimu Deng, Christopher S. Law, Santosh Kurra, Noa Simchoni, Anthony K. Shum

×

Blood immunophenotyping identifies distinct kidney histopathology and outcomes in patients with lupus nephritis
Alice Horisberger, et al.
Alice Horisberger, et al.
View: Text | PDF

Blood immunophenotyping identifies distinct kidney histopathology and outcomes in patients with lupus nephritis

  • Text
  • PDF
Abstract

Lupus nephritis (LN) is a frequent manifestation of systemic lupus erythematosus, and fewer than half of patients achieve complete renal response with standard immunosuppressants. Identifying non-invasive, blood-based immune alterations associated with renal injury could aid therapeutic decisions. Here, we used mass cytometry immunophenotyping of peripheral blood mononuclear cells in 145 patients with biopsy-proven LN and 40 healthy controls to evaluate the heterogeneity of immune activation and identify correlates of renal parameters. Unbiased analysis identified three immunologically distinct groups of patients that were associated with different patterns of histopathology, renal cell infiltrates, urine proteomic profiles, and treatment response at one year. Patients with enriched circulating granzyme B+ T cells showed more active disease and increased numbers of activated CD8 T cells in the kidney, yet they had the highest likelihood of treatment response. A second group characterized by a high type I interferon signature had a lower likelihood of response to therapy, while a third group appeared immunologically inactive but with chronic renal injuries. The major immunologic axes of variation could be distilled down to five simple cytometric parameters that recapitulate several clinical associations, highlighting the potential for blood immunoprofiling to translate to clinically useful non-invasive metrics to assess immune-mediated disease in LN.

Authors

Alice Horisberger, Alec Griffith, Joshua Keegan, Arnon Arazi, John Pulford, Ekaterina Murzin, Kaitlyn Howard, Brandon Hancock, Andrea Fava, Takanori Sasaki, Tusharkanti Ghosh, Jun Inamo, Rebecca Beuschel, Ye Cao, Katie Preisinger, Maria Gutierrez-Arcelus, Thomas M. Eisenhaure, Joel Guthridge, Paul J. Hoover, Maria Dall'Era, David Wofsy, Diane L. Kamen, Kenneth C. Kalunian, Richard Furie, Michael Belmont, Peter Izmirly, Robert Clancy, David Hildeman, E. Steve Woodle, William Apruzzese, Maureen A. McMahon, Jennifer Grossman, Jennifer L. Barnas, Fernanda Payan-Schober, Mariko Ishimori, Michael Weisman, Matthias Kretzler, Celine C. Berthier, Jeffrey B. Hodgin, Dawit S. Demeke, Chaim Putterman, Michael B. Brenner, Jennifer H. Anolik, Soumya Raychaudhuri, Nir Hacohen, Judith A. James, Anne Davidson, Michelle A. Petri, Jill P. Buyon, Betty Diamond, Fan Zhang, James A. Lederer, Deepak A. Rao

×

Autophagy is an upstream mediator of chromatin dynamics in normal and autoimmune germinal centre B cells
Marta C Sallan, Filip Filipsky, Christina H. Shi, Elena Pontarini, Manuela Terranova-Barberio, Gordon Beattie, Andrew Clear, Michele Bombardieri, Kevin Y. Yip, Dinis Parente Calado, Mark S. Cragg, Sonya James, Matthew J. Carter, Jessica Okosun, John G. Gribben, Tanya Klymenko, Andrejs Braun
Marta C Sallan, Filip Filipsky, Christina H. Shi, Elena Pontarini, Manuela Terranova-Barberio, Gordon Beattie, Andrew Clear, Michele Bombardieri, Kevin Y. Yip, Dinis Parente Calado, Mark S. Cragg, Sonya James, Matthew J. Carter, Jessica Okosun, John G. Gribben, Tanya Klymenko, Andrejs Braun
View: Text | PDF

Autophagy is an upstream mediator of chromatin dynamics in normal and autoimmune germinal centre B cells

  • Text
  • PDF
Abstract

Germinal centre (GC) B cells are pivotal in establishing a robust humoral immune response and long-term serological immunity while maintaining antibody self-tolerance. GC B cells rely on autophagy for antigen presentation and homeostatic maintenance. However, these functions, primarily associated with the light zone, cannot explain the spatiotemporal autophagy upregulation in the dark zone of GCs. Here, we define a functional mechanism controlling chromatin accessibility in GC B cells during their dark zone transition. This mechanism links autophagy and nuclear Lamin B1 dynamics with their downstream effects, including somatic hypermutation and antibody affinity maturation. Moreover, the autophagy-Lamin B1 axis is highly active in the aberrant ectopic germinal centres in the salivary glands of Sjogren’s disease, defining its role in autoimmunity.

Authors

Marta C Sallan, Filip Filipsky, Christina H. Shi, Elena Pontarini, Manuela Terranova-Barberio, Gordon Beattie, Andrew Clear, Michele Bombardieri, Kevin Y. Yip, Dinis Parente Calado, Mark S. Cragg, Sonya James, Matthew J. Carter, Jessica Okosun, John G. Gribben, Tanya Klymenko, Andrejs Braun

×

OCA-B promotes pathogenic maturation of stem-like CD4+ T cells and autoimmune demyelination
Erik P. Hughes, Amber R. Syage, Elnaz Mirzaei Mehrabad, Thomas E. Lane, Benjamin T. Spike, Dean Tantin
Erik P. Hughes, Amber R. Syage, Elnaz Mirzaei Mehrabad, Thomas E. Lane, Benjamin T. Spike, Dean Tantin
View: Text | PDF

OCA-B promotes pathogenic maturation of stem-like CD4+ T cells and autoimmune demyelination

  • Text
  • PDF
Abstract

Stem-like T cells selectively contribute to autoimmunity, but the activities that promote their pathogenicity are incompletely understood. Here, we identify the transcription coregulator OCA-B as a driver of the pathogenic maturation of stem-like CD4+ T cell to promote autoimmune demyelination. Using two human multiple sclerosis (MS) datasets, we show that POU2AF1, the gene encoding OCA-B, is elevated in CD4+ T cells from MS patients. We show that T cell-intrinsic OCA-B loss protects mice from experimental autoimmune encephalomyelitis (EAE) while preserving responses to viral CNS infection. In EAE models driven by antigen reencounter, OCA-B deletion nearly eliminates CNS infiltration, proinflammatory cytokine production and clinical disease. OCA-B-expressing CD4+ T cells of mice primed with autoantigen express an encephalitogenic gene program and preferentially confer disease. In a relapsing-remitting EAE model, OCA-B loss protects mice specifically at relapse. During remission, OCA-B promotes the expression of Tcf7, Slamf6, and Sell in proliferating CNS T cell populations. At relapse timepoints, OCA-B loss results in both the accumulation of an immunomodulatory CD4+ T cell population expressing Ccr9 and Bach2, and loss of pro-inflammatory gene expression from Th17 cells. These results identify OCA-B as a driver of pathogenic CD4+ T cells.

Authors

Erik P. Hughes, Amber R. Syage, Elnaz Mirzaei Mehrabad, Thomas E. Lane, Benjamin T. Spike, Dean Tantin

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 26
  • 27
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts