Transient vanilloid potential 1 (TRPV1) agonists are emerging as highly efficacious non-opioid analgesics in preclinical studies. These drugs selectively lesion TRPV1+ primary sensory afferents, which are responsible for the transmission of many noxious stimulus modalities. Resiniferatoxin (RTX) is a very potent and selective TRPV1 agonist and is a promising candidate for treating many types of pain. Recent work establishing intrathecal application of RTX for the treatment of pain resulting from advanced cancer has demonstrated profound analgesia in client-owned dogs with osteosarcoma. The present study uses transcriptomics and histochemistry to examine the molecular mechanism of RTX action in rats, in clinical canine subjects, and in one human subject with advanced cancer treated for pain using intrathecal RTX. In all three species we observe a strong analgesic action, yet this was accompanied by limited transcriptional alterations at the level of the DRG. Functional and neuroanatomical studies demonstrated that intrathecal RTX largely spares susceptible neuronal perikarya, which remain active peripherally, but unable to transmit signals to the spinal cord. The results demonstrate that central chemo-axotomy of the TRPV1+ afferents underlies RTX analgesia and refine the neurobiology underlying effective clinical use of TRPV1 agonists for pain control.
Matthew R. Sapio, John K. Neubert, Danielle M. LaPaglia, Dragan Maric, Jason M. Keller, Stephen J. Raithel, Eric L. Rohrs, Ethan M. Anderson, John A. Butman, Robert M. Caudle, Dorothy C. Brown, John D. Heiss, Andrew J. Mannes, Michael J. Iadarola
Insulin resistance and type 2 diabetes are associated with low levels of high-density lipoprotein-cholesterol (HDL-C). The insulin-repressible FoxO transcription factors are potential mediators of insulin’s effect on HDL-C. FoxOs mediate a substantial portion of insulin-regulated transcription, and poor FoxO repression is thought to contribute to the excessive glucose production in diabetes. In this work, we show that mice with liver-specific triple FoxO knockout (L-FoxO1,3,4), which are known to have reduced hepatic glucose production, also have increased HDL-C. This was associated with decreased expression of HDL-C clearance factors, scavenger receptor class B type I (SR-BI) and hepatic lipase, and defective selective uptake of HDL-cholesteryl ester by the liver. The phenotype could be rescued by re-expression of SR-BI. These findings demonstrate that hepatic FoxOs are required for cholesterol homeostasis and HDL-mediated reverse cholesterol transport to the liver.
Samuel X. Lee, Markus Heine, Christian Schlein, Rajasekhar Ramakrishnan, Jing Liu, Gabriella Belnavis, Ido Haimi, Alexander W. Fischer, Henry Ginsberg, Joerg Heeren, Franz Rinninger, Rebecca A. Haeusler
Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond–Blackfan anaemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anaemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor (RNH1) is an ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 to E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knock down in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis.
Vijaykumar Chennupati, Diogo F.T. Veiga, Kendle M. Maslowski, Nicola Andina, Aubry Tardivel, Eric Chi-Wang Yu, Martina Stilinovic, Cedric Simillion, Michel A. Duchosal, Manfredo Quadroni, Irene Roberts, Vijay G. Sankaran, H. Robson MacDonald, Nicolas Fasel, Anne Angelillo-Scherrer, Pascal Schneider, Trang Hoang, Ramanjaneyulu Allam
Tuberous sclerosis complex (TSC) is a dominantly inherited disease, caused by hyperactivation of the mTORC1 pathway and characterized by the development of hamartomas and benign tumors, also in the brain. Among the neurological manifestations associated with TSC, the tumor progression of static subependymal nodules (SENs) into subependymal giant cell astrocytomas (SEGAs) is one of the major causes of morbidity and shortened life expectancy. To date, mouse modeling has failed in reproducing these two lesions. Here we report that simultaneous hyperactivation of mTORC1 and Akt pathways by codeletion of Tsc1 and Pten, selectively in postnatal neural stem cells (pNSCs), is required for the formation of bona fide SENs and SEGAs. Notably, both lesions closely recapitulate the pathognomonic morphological and molecular features of the corresponding human abnormalities. The establishment of long-term expanding pNSC lines from mouse SENs and SEGAs made possible the identification of mTORC2 as one of the mediators conferring tumorigenic potential to SEGA pNSCs. Of note, in spite of concurrent Akt hyperactivation in mouse brain lesions, single mTOR inhibition by rapamycin was sufficient to strongly impair mouse SEGA growth. This study provides the first evidence that, concomitant with mTORC1 hyperactivation, sustained activation of Akt and mTORC2 in pNSCs is a mandatory step for the induction of SENs and SEGAs and, at the same time, makes available an unprecedented NSC-based in vivo/in vitro model to be exploited for identifying actionable targets in TSC.
Paola Zordan, Manuela Cominelli, Federica Cascino, Elisa Tratta, Pietro L. Poliani, Rossella Galli
BACKGROUND. Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here we describe a new model for evaluating malaria transmission from humans to Anopheles mosquitoes using controlled human malaria infection (CHMI). METHODS. Seventeen healthy malaria-naïve volunteers underwent CHMI by intravenous inoculation of P. falciparum-infected erythrocytes to initiate blood-stage infection. Seven to eight days after inoculation participants received piperaquine (480 mg) to attenuate asexual parasite replication while allowing gametocytes to develop and mature. Primary endpoints were development of gametocytemia, the transmissibility of gametocytes from humans to mosquitoes, and the safety and tolerability of the CHMI transmission model. To investigate in-vivo gametocytocidal drug activity in this model, participants were either given an experimental antimalarial, artefenomel (500 mg), a known gametocytocidal drug, primaquine (15 mg), or remained untreated during the period of gametocyte carriage. RESULTS. Male and female gametocytes were detected in all participants, and transmission to mosquitoes was achieved from 8/11 (73%) participants evaluated. Compared to untreated controls (n = 7), primaquine (15 mg, n = 5) significantly reduced gametocyte burden (P = 0.01), while artefenomel (500 mg, n = 4) had no effect. Adverse events (AEs) were mostly mild or moderate. Three AEs were assessed as severe — fatigue, elevated alanine aminotransferase, and elevated aspartate aminotransferase — and were attributed to malaria infection. Transaminase elevations were transient, asymptomatic, and resolved without intervention. CONCLUSION. We report the safe and reproducible induction of P. falciparum gametocytes in healthy malaria-naïve volunteers at densities infectious to mosquitoes, thereby demonstrating the potential for evaluating transmission-blocking interventions in this model. TRIAL REGISTRATION. ClinicalTrials.gov NCT02431637 and NCT02431650 FUNDING. Bill & Melinda Gates Foundation
Katharine A. Collins, Claire Y.T. Wang, Matthew Adams, Hayley Mitchell, Melanie Rampton, Suzanne Elliott, Isaie J. Reuling, Teun Bousema, Robert Sauerwein, Stephan Chalon, Jörg J. Möhrle, James S. McCarthy
BACKGROUND. Amongst non-diabetic individuals, mild glucose decrements alter brain activity in regions linked to reward, motivation and executive control. Whether these effects differ in T1DM patients with and without hypoglycemia awareness remains unclear. METHODS. 42 individuals (13 healthy control subjects (HC), 16 T1DM individuals with hypoglycemia awareness (T1DM-Aware) and 13 T1DM individuals with hypoglycemia unawareness (T1DM-Unaware)) underwent BOLD fMRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60 mg/dl) clamp for assessment of neural responses to mild hypoglycemia. RESULTS. Mild hypoglycemia in HC altered activity in the caudate, insula, prefrontal cortex, and angular gyrus, whereas T1DM-Aware subjects showed no caudate and insula changes, but showed altered activation patterns in the prefrontal cortex and angular gyrus. Most strikingly, in direct contrast to HC and T1DM-Aware subjects, T1DM-Unaware subjects failed to show any hypoglycemia-induced changes in brain activity. These findings were also associated with blunted hormonal counterregulatory responses and hypoglycemia symptoms scores during mild hypoglycemia. CONCLUSION. In T1DM, and in particular T1DM-Unaware patients, there is a progressive blunting of brain responses in cortico-striatal and fronto-parietal neurocircuits in response to mild-moderate hypoglycemia. These findings have implications for understanding why individuals with impaired hypoglycemia awareness fail to respond appropriately to falling blood glucose levels. FUNDING. This study was supported in part by grants from the NIH R01DK020495 and P30 DK045735 (Sherwin), K23DK109284 (Hwang), K08AA023545 (Seo), the Yale Center for Clinical Investigation supported by the Clinical Translational Science Award (UL1 RR024139).
Janice Jin Hwang, Lisa Parikh, Cheryl Lacadie, Dongju Seo, Wai Lam, Muhammad Hamza, Christian Schmidt, Feng Dai, Anne-Sophie Sejling, Renata Belfort-DeAguiar, R. Todd Constable, Rajita Sinha, Robert Sherwin
Myc activation is a primary oncogenic event in many human cancers; however, these transcription factors are difficult to inhibit pharmacologically, suggesting that Myc-dependent downstream effectors may be more tractable therapeutic targets. Here we show that Myc overexpression induces endoplasmic reticulum (ER) stress and engages the IRE1α-XBP1 pathway through multiple molecular mechanisms in a variety of c-Myc- and N-Myc-dependent cancers. In particular, Myc-overexpressing cells require IRE1α-XBP1 signaling for sustained growth and survival in vitro and in vivo, dependent on elevated stearoyl-CoA-desaturase 1 (SCD1) activity. Pharmacological and genetic XBP1 inhibition induces Myc-dependent apoptosis, which is alleviated by exogenous unsaturated fatty acids. Of note, SCD1 inhibition phenocopies IRE1α RNase activity suppression in vivo. Furthermore, IRE1α inhibition enhances the cytotoxic effects of standard chemotherapy drugs used to treat c-Myc-overexpressing Burkitt’s lymphoma, suggesting that inhibiting the IRE1α-XBP1 pathway is a useful general strategy for treatment of Myc-driven cancers.
Hong Xie, Chih-Hang Anthony Tang, Jun H. Song, Anthony Mancuso, Juan R. Del Valle, Jin Cao, Yan Xiang, Chi V. Dang, Roy Lan, Danielle J. Sanchez, Brian Keith, Chih-Chi Andrew Hu, M. Celeste Simon
Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive Rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney disease. Here we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b–/– mice from developing severe kidney damage without altering anti-double stranded (ds) DNA Ab production, by simultaneously blocking the HB-EGF/EGFR and the TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b–/– mice; alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b–/– mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a novel target for selective and simultaneous dual inhibition of two major pathological pathways in the effector arm of the disease.
Xiaoping Qing, Yurii Chinenov, Patricia Redecha, Michael Madaio, Joris J.T.H. Roelofs, Gregory Farber, Priya D. Issuree, Laura Donlin, David R. McIlwain, Tak W. Mak, Carl P. Blobel, Jane E. Salmon
T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who obtained a complete response following adoptive transfer of tumor infiltrating lymphocytes (TIL). Tumor exome sequencing surprisingly revealed less than 30 somatic mutations, including oncogenic BRAF V600E. Analysis of the specificity of TIL identified rare CD4 T cells specific for BRAFV600E and diverse CD8 T cells reactive to non-mutated self-antigens. These specificities increased in blood after TIL transfer and persisted long term suggesting they contributed to the effective antitumor immune response. Gene transfer of the BRAFV600E-specific T cell receptor (TCR) conferred recognition of class II MHC positive cells expressing the BRAF mutation. Therapy with TCR engineered BRAFV600E-specific CD4+ T cells may have direct antitumor effects and augment CD8+ T cell responses to self and/or mutated tumor antigens in patients with BRAF mutated cancers.
Joshua R. Veatch, Sylvia M. Lee, Matthew Fitzgibbon, I-Ting Chow, Brenda Jesernig, Thomas Schmitt, Ying Ying Kong, Julia Kargl, A. McGarry Houghton, John A. Thompson, Martin McIntosh, William W. Kwok, Stanley R. Riddell
Aberrant activation of MAPK signaling leads to activation of oncogenic transcriptomes. How MAPK signaling is coupled with transcriptional response in cancer is not fully understood. In gastrointestinal stromal tumor and melanoma, both with oncogenic MAPK activation, we find that ETV1 and other Pea3-ETS transcription factors are critical nuclear effectors of MAPK signaling that are regulated through protein stability. Expression of stabilized Pea3-ETS factors can partially rescue the MAPK transcriptome and cell viability after MAPK inhibition. To identify players involved in this process, we performed a pooled genome-wide RNAi screen using a novel fluorescence-based ETV1 protein stability sensor, and identified COP1, DET1, DDB1, UBE3C, PSMD4, and COP9 signalosome members. COP1 and DET1 loss led to decoupling between MAPK signaling and downstream transcriptional response, where MAPK inhibition failed to destabilize Pea3 factors and fully inhibit the MAPK transcriptome, thus resulting in decreased sensitivity to MAPK pathway inhibitors. We identified multiple COP1 and DET1 mutations in human tumors that were defective in degradation of Pea3-ETS factors. Two melanoma patients had de novo DET1 mutations arising after vemurafenib treatment. These observations indicate that MAPK signaling-dependent regulation of Pea3-ETS protein stability is a key signaling node in oncogenesis and therapeutic resistance to MAPK pathway inhibition.
Yuanyuan Xie, Zhen Cao, Elissa W.P. Wong, Youxin Guan, Wenfu Ma, Jenny Q. Zhang, Edward G. Walczak, Devan Murphy, Leili Ran, Inna Sirota, Shangqian Wang, Shipra Shukla, Dong Gao, Simon R.V. Knott, Kenneth Chang, Justin Leu, John Wongvipat, Cristina R. Antonescu, Gregory Hannon, Ping Chi, Yu Chen
No posts were found with this tag.