Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,247 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 190
  • 191
  • 192
  • …
  • 224
  • 225
  • Next →
Quadrivalent Vesiculovax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death
Robert W. Cross, Rong Xu, Demetrius Matassov, Stefan Hamm, Theresa E. Latham, Cheryl S. Gerardi, Rebecca M. Nowak, Joan B. Geisbert, Ayuko Ota-Setlik, Krystle N. Agans, Amara Luckay, Susan E. Witko, Lena Soukieh, Daniel J. Deer, Chad E. Mire, Heinz Feldmann, Christian Happi, Karla A. Fenton, John H. Eldridge, Thomas W. Geisbert
Robert W. Cross, Rong Xu, Demetrius Matassov, Stefan Hamm, Theresa E. Latham, Cheryl S. Gerardi, Rebecca M. Nowak, Joan B. Geisbert, Ayuko Ota-Setlik, Krystle N. Agans, Amara Luckay, Susan E. Witko, Lena Soukieh, Daniel J. Deer, Chad E. Mire, Heinz Feldmann, Christian Happi, Karla A. Fenton, John H. Eldridge, Thomas W. Geisbert
View: Text | PDF

Quadrivalent Vesiculovax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death

  • Text
  • PDF
Abstract

Recent occurrences of filoviruses and the arenavirus Lassa virus (LASV) in overlapping endemic areas of Africa highlight the need for a prophylactic vaccine that would confer protection against all of these viruses that cause lethal hemorrhagic fever (HF). We developed a quadrivalent formulation of Vesiculovax that contains recombinant vesicular stomatitis virus (rVSV) vectors expressing filovirus glycoproteins and also contains a rVSV vector expressing the glycoprotein of a lineage IV strain of LASV. Cynomolgus macaques were vaccinated twice with the quadrivalent formulation, followed by challenge 28 days after the boost vaccination with each of the three corresponding filoviruses (Ebola, Sudan, Marburg) or a heterologous contemporary lineage II strain of LASV. Serum IgG and neutralizing antibody responses specific for all four glycoproteins were detected in all vaccinated animals. A modest and balanced cell-mediated immune response specific for the glycoproteins was also detected in most of the vaccinated macaques. Regardless of the levels of total glycoprotein-specific immune response detected after vaccination, all immunized animals were protected from disease and death following lethal challenges. These findings indicate that vaccination with attenuated rVSV vectors each expressing a single HF virus glycoprotein may provide protection against those filoviruses and LASV most commonly responsible for outbreaks of severe HF in Africa.

Authors

Robert W. Cross, Rong Xu, Demetrius Matassov, Stefan Hamm, Theresa E. Latham, Cheryl S. Gerardi, Rebecca M. Nowak, Joan B. Geisbert, Ayuko Ota-Setlik, Krystle N. Agans, Amara Luckay, Susan E. Witko, Lena Soukieh, Daniel J. Deer, Chad E. Mire, Heinz Feldmann, Christian Happi, Karla A. Fenton, John H. Eldridge, Thomas W. Geisbert

×

Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy
Nikita S. Sharma, Vineet K. Gupta, Vanessa T. Garrido, Roey Hadad, Brittany C. Durden, Kousik Kesh, Bhuwan Giri, Anthony Ferrantella, Vikas Dudeja, Ashok Saluja, Sulagna Banerjee
Nikita S. Sharma, Vineet K. Gupta, Vanessa T. Garrido, Roey Hadad, Brittany C. Durden, Kousik Kesh, Bhuwan Giri, Anthony Ferrantella, Vikas Dudeja, Ashok Saluja, Sulagna Banerjee
View: Text | PDF

Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is considered to be a highly immunosuppressive and heterogenous neoplasm. Despite improved knowledge regarding the genetic background of the tumor and better understanding of the tumor microenvironment, immune checkpoint inhibitor therapy (targeting CTLA4, PD1, PDL1) has not been very successful against PDAC. The robust desmoplastic stroma, along with an extensive extracellular matrix (ECM) that is rich in hyaluronan, plays an integral role in this immune evasion. Hexosamine biosynthesis pathway (HBP), a shunt pathway of glycolysis, is a metabolic node in cancer cells that can promote survival pathways on one hand and influence the hyaluronan synthesis in the ECM on the other. The rate-limiting enzyme of the pathway, glutamine-fructose amidotransferase (GFAT1), uses glutamine and fructose 6-phosphate to eventually synthesize UDP-GlcNAc. In the current manuscript, we targeted this glutamine-utilizing enzyme by a small molecule glutamine analog (6-diazo-5-oxo-L-norleucine or DON). Our results showed that DON decreased the self-renewal potential and metastatic ability of tumor cell. Further, treatment with DON decreased hyaluronan and collagen in the tumor microenvironment, leading to an extensive remodeling of the ECM, and an increased infiltration CD8+ T-cells. Additionally, treatment with DON sensitized pancreatic tumors to anti-PD1 therapy resulting in tumor regression and prolonged survival.

Authors

Nikita S. Sharma, Vineet K. Gupta, Vanessa T. Garrido, Roey Hadad, Brittany C. Durden, Kousik Kesh, Bhuwan Giri, Anthony Ferrantella, Vikas Dudeja, Ashok Saluja, Sulagna Banerjee

×

Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function
Mathilda Bedin, et al.
Mathilda Bedin, et al.
View: Text | PDF | Corrigendum

Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function

  • Text
  • PDF
Abstract

Background: Proteinuria is considered as an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear if all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS) featured by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding. Methods: We used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling and epidemiological methods. Results: We identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene are associated with chronic isolated proteinuria with childhood onset. Since the proteinuria displayed a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and proteinuria-lowering treatments. Yet, renal function was normal in all cases. By contrast, we did not find any biallelic pathogenic CUBN variants in patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 out of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that four C-terminal CUBN variants are associated with albuminuria and moderately increased GFR in meta-analyses of large population-based cohorts. Conclusions: Collectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsies.

Authors

Mathilda Bedin, Olivia Boyer, Aude Servais, Yong Li, Laure Villoing-Gaudé, Marie-Josephe Tête, Alexandra Cambier, Julien Hogan, Veronique Baudouin, Saoussen Krid, Albert Bensman, Florie Lammens, Ferielle Louillet, Bruno Ranchin, Cecile Vigneau, Iseline Bouteau, Corinne Isnard-Bagnis, Christoph J. Mache, Tobias Schäfer, Lars Pape, Markus Gödel, Tobias B. Huber, Marcus Benz, Günter Klaus, Matthias Hansen, Kay Latta, Olivier Gribouval, Vincent Morinière, Carole Tournant, Maik Grohmann, Elisa Kuhn, Timo Wagner, Christine Bole-Feysot, Fabienne Jabot-Hanin, Patrick Nitschké, Tarunveer S. Ahluwalia, Anna Köttgen, Christian Brix Folsted Andersen, Carsten Bergmann, Corinne Antignac, Matias Simons

×

Chronic myelogenous leukemia stem cells require cell-autonomous pleiotrophin signaling
Heather A. Himburg, Martina Roos, Tiancheng Fang, Yurun Zhang, Christina M. Termini, Lauren Schlussel, Mindy M. Kim, Amara Pang, Jenny Kan, Liman Zhao, Hyung Suh, Joshua P. Sasine, Gopal Sapparapu, Peter M. Bowers, Gary Schiller, John P. Chute
Heather A. Himburg, Martina Roos, Tiancheng Fang, Yurun Zhang, Christina M. Termini, Lauren Schlussel, Mindy M. Kim, Amara Pang, Jenny Kan, Liman Zhao, Hyung Suh, Joshua P. Sasine, Gopal Sapparapu, Peter M. Bowers, Gary Schiller, John P. Chute
View: Text | PDF

Chronic myelogenous leukemia stem cells require cell-autonomous pleiotrophin signaling

  • Text
  • PDF
Abstract

Tyrosine kinase inhibitors (TKIs) induce molecular remission in the majority of patients with chronic myelogenous leukemia (CML), but persistence of CML stem cells hinders cure and necessitates indefinite TKI therapy. We report that CML stem cells upregulate expression of pleiotrophin (PTN) and require cell-autonomous PTN signaling for CML pathogenesis in BCR/ABL+ mice. Constitutive PTN deletion substantially reduced the numbers of CML stem cells capable of initiating CML in vivo. Hematopoietic cell–specific deletion of PTN suppressed CML development in BCR/ABL+ mice, suggesting that cell-autonomous PTN signaling was necessary for CML disease evolution. Mechanistically, PTN promoted CML stem cell survival and TKI resistance via induction of Jun and the unfolded protein response. Human CML cells were also dependent on cell-autonomous PTN signaling and anti–PTN antibody suppressed human CML colony formation and CML repopulation in vivo. Our results suggest that targeted inhibition of PTN has therapeutic potential to eradicate CML stem cells.

Authors

Heather A. Himburg, Martina Roos, Tiancheng Fang, Yurun Zhang, Christina M. Termini, Lauren Schlussel, Mindy M. Kim, Amara Pang, Jenny Kan, Liman Zhao, Hyung Suh, Joshua P. Sasine, Gopal Sapparapu, Peter M. Bowers, Gary Schiller, John P. Chute

×

Epidermal hepcidin is required for neutrophil response to bacterial infection
Mariangela Malerba, Sabine Louis, Sylvain Cuvellier, Srikanth Mairpady Shambat, Camille Hua, Camille Gomart, Agnès Fouet, Nicolas Ortonne, Jean-Winoc Decousser, Annelies S. Zinkernagel, Jacques R.R. Mathieu, Carole Peyssonnaux
Mariangela Malerba, Sabine Louis, Sylvain Cuvellier, Srikanth Mairpady Shambat, Camille Hua, Camille Gomart, Agnès Fouet, Nicolas Ortonne, Jean-Winoc Decousser, Annelies S. Zinkernagel, Jacques R.R. Mathieu, Carole Peyssonnaux
View: Text | PDF

Epidermal hepcidin is required for neutrophil response to bacterial infection

  • Text
  • PDF
Abstract

Novel approaches for adjunctive therapy are urgently needed for infections complicated by antibiotic-resistant pathogens and for patients with compromised immunity. Necrotizing fasciitis (NF) is a destructive skin and soft tissue infection. Despite treatment with systemic antibiotics and radical debridement of necrotic tissue, lethality remains high. The key iron regulatory hormone hepcidin was originally identified as a cationic antimicrobial peptide (AMP), but its putative expression and role in the skin, a major site of AMP production, has never been investigated. We report here that hepcidin production is induced in the skin of patients with Group A Streptococcal (GAS) NF. In a GAS-induced NF model, mice lacking hepcidin in keratinocytes failed to restrict systemic spread of infection from an initial tissue focus. Unexpectedly, this effect was due its ability to promote production of the CXCL1 chemokine by keratinocytes resulting in neutrophil recruitment. Unlike CXCL1, hepcidin is resistant to degradation by major GAS proteases and could therefore serve as a reservoir to maintain steady state levels of CXCL1 in infected tissue. Finally, injection of synthetic hepcidin at the site of infection can limit or completely prevent systemic spread of GAS infection suggesting that hepcidin agonists could have a therapeutic role in NF.

Authors

Mariangela Malerba, Sabine Louis, Sylvain Cuvellier, Srikanth Mairpady Shambat, Camille Hua, Camille Gomart, Agnès Fouet, Nicolas Ortonne, Jean-Winoc Decousser, Annelies S. Zinkernagel, Jacques R.R. Mathieu, Carole Peyssonnaux

×

Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils
Karim Mahiddine, Adam Blaisdell, Stephany Ma, Amandine Créquer-Grandhomme, Clifford A. Lowell, Adrian Erlebacher
Karim Mahiddine, Adam Blaisdell, Stephany Ma, Amandine Créquer-Grandhomme, Clifford A. Lowell, Adrian Erlebacher
View: Text | PDF

Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils

  • Text
  • PDF
Abstract

Polymorphonuclear neutrophils (PMNs) are increasingly recognized to influence solid tumor development, but why their effects are so context-dependent and even frequently divergent remains poorly understood. Using an autochthonous mouse model of uterine cancer and the administration of respiratory hyperoxia as a means to improve tumor oxygenation, we provide in vivo evidence that hypoxia is a potent determinant of tumor-associated PMN phenotypes and direct PMN-tumor cell interactions. Upon relief of tumor hypoxia, PMNs were recruited less intensely to the tumor-bearing uterus but the recruited cells much more effectively killed tumor cells, an activity our data moreover suggested was mediated via their production of NADPH oxidase-derived reactive oxygen species and MMP-9. Simultaneously, their ability to promote tumor cell proliferation, which appeared mediated via their production of neutrophil elastase, was rendered less effective. Relieving tumor hypoxia thus greatly improved net PMN-dependent tumor control, leading to a massive reduction in tumor burden. Remarkably, this outcome was T cell-independent. Together, these findings identify key hypoxia-regulated molecular mechanisms through which PMNs directly induce tumor cell death and proliferation in vivo and suggest that the contrasting properties of PMNs in different tumor settings may in part reflect the effects of hypoxia on direct PMN-tumor cell interactions.

Authors

Karim Mahiddine, Adam Blaisdell, Stephany Ma, Amandine Créquer-Grandhomme, Clifford A. Lowell, Adrian Erlebacher

×

Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer
Changhao Chen, Yuming Luo, Wang He, Yue Zhao, Yao Kong, Hongwei Liu, Guangzheng Zhong, Yuting Li, Jun Li, Jian Huang, Rufu Chen, Tianxin Lin
Changhao Chen, Yuming Luo, Wang He, Yue Zhao, Yao Kong, Hongwei Liu, Guangzheng Zhong, Yuting Li, Jun Li, Jian Huang, Rufu Chen, Tianxin Lin
View: Text | PDF

Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer

  • Text
  • PDF
Abstract

Patients with bladder cancer (BCa) with clinical lymph node (LN) metastasis have extremely poor prognosis. VEGF-C has been demonstrated to play vital roles in LN metastasis in BCa. However, approximately 20% of BCa with LN metastasis exhibits low VEGF-C expression, suggesting a VEGF-C-independent mechanism for LN metastasis of BCa. Herein, we demonstrated that BCa cell-secreted exosomes-mediated lymphangiogenesis promoted LN metastasis in BCa, which was in a VEGF-C-independent manner. We identified an exosomal long noncoding RNA (lncRNA), termed lymph node metastasis-associated transcript 2 (LNMAT2), stimulated HLEC tube formation and migration in vitro and enhanced tumor lymphangiogenesis and LN metastasis in vivo. Mechanistically, LNMAT2 was loaded to BCa cell-secreted exosomes by directly interacting with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1). Subsequently, exosomal LNMAT2 was internalized by HLECs and epigenetically upregulated prospero homeobox 1 (PROX1) expression by recruitment of hnRNPA2B1 and increasing the H3K4 trimethylation level in the PROX1 promoter, ultimately resulting in lymphangiogenesis and lymphatic metastasis. Therefore, our findings highlight a VEGF-C-independent mechanism of exosomal lncRNA-mediated LN metastasis and identify LNMAT2 as a therapeutic target for LN metastasis in BCa.

Authors

Changhao Chen, Yuming Luo, Wang He, Yue Zhao, Yao Kong, Hongwei Liu, Guangzheng Zhong, Yuting Li, Jun Li, Jian Huang, Rufu Chen, Tianxin Lin

×

Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy
Catherine E. Willoughby, Yanyan Jiang, Huw D. Thomas, Elaine Willmore, Suzanne Kyle, Anita Wittner, Nicole Phillips, Yan Zhao, Susan J. Tudhope, Lisa Prendergast, Gesa Junge, Luiza Madia Lourenco, M. Raymond V. Finlay, Paul Turner, Joanne M. Munck, Roger J. Griffin, Tommy Rennison, James Pickles, Celine Cano, David R. Newell, Helen L. Reeves, Anderson J. Ryan, Stephen R. Wedge
Catherine E. Willoughby, Yanyan Jiang, Huw D. Thomas, Elaine Willmore, Suzanne Kyle, Anita Wittner, Nicole Phillips, Yan Zhao, Susan J. Tudhope, Lisa Prendergast, Gesa Junge, Luiza Madia Lourenco, M. Raymond V. Finlay, Paul Turner, Joanne M. Munck, Roger J. Griffin, Tommy Rennison, James Pickles, Celine Cano, David R. Newell, Helen L. Reeves, Anderson J. Ryan, Stephen R. Wedge
View: Text | PDF

Selective DNA-PKcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy

  • Text
  • PDF
Abstract

Potentiating radiotherapy and chemotherapy by inhibiting DNA damage repair is proposed as a therapeutic strategy to improve outcomes for patients with solid tumors. However, this approach risks enhancing normal tissue toxicity as much as tumor toxicity, thereby limiting its translational impact. Using NU5455, a newly-identified highly-selective oral inhibitor of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity, we found that it was indeed possible to preferentially augment the effect of targeted-radiotherapy on human orthotopic lung tumors without influencing acute DNA-damage or a late radiation-induced toxicity (fibrosis) to normal mouse lung. Furthermore, while NU5455 administration increased both the efficacy and toxicity of a parenterally-administered topoisomerase inhibitor, it enhanced the activity of doxorubicin released locally in liver tumor xenografts without inducing any adverse effect. This strategy is particularly relevant to hepatocellular cancer which is treated clinically with localized drug-eluting beads and for which DNA-PKcs activity is reported to confer resistance to treatment. We conclude that transient pharmacological inhibition of DNA-PKcs activity is effective and tolerable when combined with localized DNA-damaging therapies and thus has promising clinical potential.

Authors

Catherine E. Willoughby, Yanyan Jiang, Huw D. Thomas, Elaine Willmore, Suzanne Kyle, Anita Wittner, Nicole Phillips, Yan Zhao, Susan J. Tudhope, Lisa Prendergast, Gesa Junge, Luiza Madia Lourenco, M. Raymond V. Finlay, Paul Turner, Joanne M. Munck, Roger J. Griffin, Tommy Rennison, James Pickles, Celine Cano, David R. Newell, Helen L. Reeves, Anderson J. Ryan, Stephen R. Wedge

×

Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis
Anh-Thu N. Lam, Melis A. Aksit, Briana Vecchio-Pagan, Celeste A. Shelton, Derek L. Osorio, Arianna F. Anzmann, Loyal A. Goff, David C. Whitcomb, Scott M. Blackman, Garry R. Cutting
Anh-Thu N. Lam, Melis A. Aksit, Briana Vecchio-Pagan, Celeste A. Shelton, Derek L. Osorio, Arianna F. Anzmann, Loyal A. Goff, David C. Whitcomb, Scott M. Blackman, Garry R. Cutting
View: Text | PDF

Increased expression of anion transporter SLC26A9 delays diabetes onset in cystic fibrosis

  • Text
  • PDF
Abstract

Diabetes is a common complication of cystic fibrosis (CF) that affects approximately 20% of adolescents and 40% to 50% of adults with CF. The age-at-onset of CF-related diabetes (marked by clinical diagnosis and treatment initiation) is an important measure of the disease process. DNA variants associated with age-at-onset of CFRD reside in and near SLC26A9. Deep sequencing of the SLC26A9 gene in 762 individuals with CF revealed that two common DNA haplotypes formed by the risk variants account for the association with diabetes (high risk, P-value: 4.34E-3; low risk, P-value: 1.14E-3). Single-cell RNA (scRNA) sequencing indicated that SLC26A9 is predominantly expressed in pancreatic ductal cells, and frequently co-expressed with CFTR along with transcription factors that have binding sites 5′ of SLC26A9. These findings replicated upon re-analysis of scRNA data from 4 independent studies. DNA fragments derived from the 5′ region of SLC26A9 bearing variants from the low risk haplotype generated 12% to 20% higher levels of expression in PANC-1 and CFPAC-1 cells compared to the high risk haplotype (P-values: 2.00E-3 to 5.15E-9). Taken together, our findings indicate that an increase in SLC26A9 expression in ductal cells of the pancreas delays the age-at-onset of diabetes, thereby suggesting a CFTR-agnostic treatment for a major complication of CF.

Authors

Anh-Thu N. Lam, Melis A. Aksit, Briana Vecchio-Pagan, Celeste A. Shelton, Derek L. Osorio, Arianna F. Anzmann, Loyal A. Goff, David C. Whitcomb, Scott M. Blackman, Garry R. Cutting

×

Myelin-specific CD8 T cells exacerbate brain inflammation in CNS autoimmunity
Catriona A. Wagner, Pamela J. Roqué, Trevor R. Mileur, Denny Liggitt, Joan M. Goverman
Catriona A. Wagner, Pamela J. Roqué, Trevor R. Mileur, Denny Liggitt, Joan M. Goverman
View: Text | PDF

Myelin-specific CD8 T cells exacerbate brain inflammation in CNS autoimmunity

  • Text
  • PDF
Abstract

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the CNS. Although CD4 T cells are implicated in MS pathogenesis and have been the main focus of MS research using the animal model experimental autoimmune encephalomyelitis (EAE), substantial evidence from patients with MS points to a role for CD8 T cells in disease pathogenesis. We previously showed that an MHC class I-restricted epitope of myelin basic protein (MBP) is presented in the CNS during CD4 T cell-initiated EAE. Here, we investigated whether naïve MBP-specific CD8 T cells recruited to the CNS during CD4 T cell-initiated EAE engaged in determinant-spreading and influenced disease. We found that the MBP-specific CD8 T cells exacerbated brain but not spinal cord inflammation. We show that a higher frequency of monocytes and monocyte-derived cells presented the MHC class I-restricted MBP ligand in the brain compared to the spinal cord. Infiltration of MBP-specific CD8 T cells enhanced ROS production in the brain only in these cell-types and only when the MBP-specific CD8 T cells expressed Fas ligand (FasL). These results suggest that myelin-specific CD8 T cells may contribute to disease pathogenesis via a FasL-dependent mechanism that preferentially promotes lesion formation in the brain.

Authors

Catriona A. Wagner, Pamela J. Roqué, Trevor R. Mileur, Denny Liggitt, Joan M. Goverman

×
  • ← Previous
  • 1
  • 2
  • …
  • 190
  • 191
  • 192
  • …
  • 224
  • 225
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts