Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,220 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 190
  • 191
  • 192
  • …
  • 221
  • 222
  • Next →
CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion
Junhee Park, … , Kwang-Kyun Park, Won-Yoon Chung
Junhee Park, … , Kwang-Kyun Park, Won-Yoon Chung
Published September 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125336.
View: Text | PDF

CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion

  • Text
  • PDF
Abstract

Oral squamous cell carcinoma (OSCC) frequently invades the maxillary or mandibular bone, and this bone invasion is closely associated with poor prognosis and survival. Here, we show that CCL28 functions as a negative regulator of OSCC bone invasion. CCL28 inhibited invasion and epithelial-mesenchymal transition (EMT), and its inhibition of EMT was characterized by induced E-cadherin expression and reduced nuclear localization of beta-catenin in OSCC cells with detectable RUNX3 expression levels. CCL28 signaling via CCR10 increased retinoic acid receptor (RAR)β expression by reducing the interaction between RARα and HDAC1. In addition, CCL28 reduced RANKL production in OSCC and osteoblastic cells and blocked RANKL-induced osteoclastogenesis in osteoclast precursors. Intraperitoneally administered CCL28 inhibited tumor growth and osteolysis in mouse calvaria and tibia inoculated with OSCC cells. RARβ expression was also increased in tumor tissues. In OSCC patients, low CCL28, CCR10, and RARβ expression levels were highly correlated with bone invasion. OSCC patients with higher expression of CCL28, CCR10, or RARβ had significantly better overall survival. These findings suggest that CCL28, CCR10, and RARβ are useful markers for the prediction and treatment of OSCC bone invasion. Furthermore, CCL28 upregulation in OSCC cells or CCL28 treatment can be a therapeutic strategy for OSCC bone invasion.

Authors

Junhee Park, Xianglan Zhang, Sun Kyoung Lee, Na-Young Song, Seung Hwa Son, Ki Rim Kim, Jae Hoon Shim, Kwang-Kyun Park, Won-Yoon Chung

×

Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity
Takayuki Katsuyama, … , George C. Tsokos, Vaishali R. Moulton
Takayuki Katsuyama, … , George C. Tsokos, Vaishali R. Moulton
Published September 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127949.
View: Text | PDF

Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) is a devastating autoimmune disease, in which hyperactive T cells play a critical role. Understanding molecular mechanisms underlying the T cell hyperactivity will lead to identification of specific therapeutic targets. Serine/arginine-rich splicing factor (SRSF)1 is an essential RNA-binding protein which controls posttranscriptional gene expression. We have demonstrated that SRSF1 levels are aberrantly decreased in T cells from SLE patients and correlate with severe disease, yet the role of SRSF1 in T cell physiology and autoimmune disease is largely unknown. Here we show that T cell-restricted Srsf1-deficient mice develop systemic autoimmunity and lupus-nephritis. Mice exhibit increased frequencies of activated/effector T cells producing proinflammatory cytokines, and an elevated T cell activation gene signature. Mechanistically, we noted increased activity of the mechanistic target of rapamycin (mTOR) pathway and reduced expression of its repressor PTEN. The mTOR complex (mTORC)1 inhibitor rapamycin suppressed proinflammatory cytokine production by T cells and alleviated autoimmunity in Srsf1-deficient mice. Of direct clinical relevance, PTEN levels correlated with SRSF1 in T cells from SLE patients, and SRSF1 overexpression rescued PTEN, suppressed mTORC1 activation and proinflammatory cytokine production. Our studies reveal the role of a previously unrecognized molecule SRSF1 in restraining T cell activation and averting the development of autoimmune disease and a potential therapeutic target for lupus.

Authors

Takayuki Katsuyama, Hao Li, Denis Comte, George C. Tsokos, Vaishali R. Moulton

×

Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity
Jiong Hu, … , Rüdiger Popp, Ingrid Fleming
Jiong Hu, … , Rüdiger Popp, Ingrid Fleming
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123835.
View: Text | PDF

Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity

  • Text
  • PDF
Abstract

Polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) positively affect the outcome of retinopathy of prematurity (ROP). Given that DHA metabolism by cytochrome P450 and soluble epoxide hydrolase (sEH) enzymes affects retinal angiogenesis and vascular stability we investigated the role of sEH in a mouse model of ROP. In wild-type mice, hyperoxia elicited the tyrosine nitration and inhibition of the sEH and decreased generation of the DHA-derived diol 19,20-dihydroxydocosapentaenoic acid (DHDP). Correspondingly in a murine model of ROP, sEH–/– mice developed a larger central avascular zone and peripheral pathological vascular tuft formation than their wild-type littermates. Astrocytes were the cells most affected by sEH deletion and hyperoxia increased astrocyte apoptosis. In rescue experiments 19,20-DHDP prevented astrocyte loss by targeting the mitochondrial membrane to prevent the hyperoxia-induced dissociation of presenilin-1 (PS-1) and PS-1 associated protein (PSAP) to attenuate PARP1 activation and mitochondrial DNA damage. Therapeutic intravitreal administration of 19,20-DHDP not only suppressed astrocyte loss but also reduced pathological vascular tuft formation in sEH–/– mice. Our data indicate that sEH activity is required for mitochondrial integrity and retinal astrocyte survival in ROP. Moreover, 19,20-DHDP may be more effective than DHA as a nutritional supplement at preventing retinopathy in preterm infants.

Authors

Jiong Hu, Sofia Iris Bibli, Janina Wittig, Sven Zukunft, Jihong Lin, Hans-Peter Hammes, Rüdiger Popp, Ingrid Fleming

×

Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice
Arnaud F. Klein, … , Denis Furling, Matthew J. A. Wood
Arnaud F. Klein, … , Denis Furling, Matthew J. A. Wood
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128205.
View: Text | PDF

Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice

  • Text
  • PDF
Abstract

Antisense oligonucleotides (ASOs) targeting pathologic RNAs have shown promising therapeutic corrections for many genetic diseases including myotonic dystrophy (DM1). Thus, ASO strategies for DM1 can abolish the toxic RNA gain-of-function mechanism caused by nuclear-retained mutant transcripts containing CUG expansions (CUGexp). However, systemic use of ASOs for this muscular disease remains challenging due to poor drug distribution to skeletal muscle. To overcome this limitation, we test an arginine-rich Pip6a cell–penetrating peptide and show that Pip6a-conjugated morpholino phosphorodiamidate oligomer (PMO) dramatically enhanced ASO delivery into striated muscles of DM1 mice following systemic administration in comparison with unconjugated PMO and other ASO strategies. Thus, low-dose treatment of Pip6a-PMO-CAG targeting pathologic expansions is sufficient to reverse both splicing defects and myotonia in DM1 mice and normalizes the overall disease transcriptome. Moreover, treated DM1 patient–derived muscle cells showed that Pip6a-PMO-CAG specifically targets mutant CUGexp-DMPK transcripts to abrogate the detrimental sequestration of MBNL1 splicing factor by nuclear RNA foci and consequently MBNL1 functional loss, responsible for splicing defects and muscle dysfunction. Our results demonstrate that Pip6a-PMO-CAG induces high efficacy and long-lasting correction of DM1-associated phenotypes at both molecular and functional levels, and strongly support the use of advanced peptide-conjugates for systemic corrective therapy in DM1.

Authors

Arnaud F. Klein, Miguel A. Varela, Ludovic Arandel, Ashling Holland, Naira Naouar, Andrey Arzumanov, David Seoane, Lucile Revillod, Guillaume Bassez, Arnaud Ferry, Dominic Jauvin, Geneviève Gourdon, Jack Puymirat, Michael J. Gait, Denis Furling, Matthew J. A. Wood

×

Chimeric antigen receptor-induced BCL11B suppression propagates NK-like cell development
Marcel Maluski, … , Marcel R.M. van den Brink, Martin G. Sauer
Marcel Maluski, … , Marcel R.M. van den Brink, Martin G. Sauer
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126350.
View: Text | PDF

Chimeric antigen receptor-induced BCL11B suppression propagates NK-like cell development

  • Text
  • PDF
Abstract

The transcription factor B Cell CLL/Lymphoma 11B (BCL11B) is indispensable for T lineage development of lymphoid progenitors. Here we show that chimeric antigen receptor (CAR) expression early in ex vivo generated lymphoid progenitors suppressed BCL11B, leading to suppression of T cell-associated gene expression and acquisition of natural killer (NK) cell-like properties. Upon adoptive transfer into hematopoietic stem cell transplant recipients they differentiated into CAR-induced killer cells (CARiK) that mediated potent antigen-directed antileukemic activity even across MHC barriers. A CD28 and active immune-receptor-tyrosine-based-activation-motifs were critical for a functional CARiK phenotype. These results give important insights into differentiation of murine and human lymphoid progenitors driven by synthetic CAR transgene-expression and encourage further evaluation of ex vivo generated CARiK cells for targeted immunotherapy.

Authors

Marcel Maluski, Arnab Ghosh, Jessica Herbst, Vanessa Scholl, Rolf Baumann, Jochen Huehn, Robert Geffers, Johann Meyer, Holger Maul, Britta Eiz-Vesper, Andreas Krueger, Axel Schambach, Marcel R.M. van den Brink, Martin G. Sauer

×

Mechanisms of reactivation of latent tuberculosis infection due to SIV co-infection
Allison N. Bucşan, … , Shabaana A. Khader, Deepak Kaushal
Allison N. Bucşan, … , Shabaana A. Khader, Deepak Kaushal
Published September 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125810.
View: Text | PDF

Mechanisms of reactivation of latent tuberculosis infection due to SIV co-infection

  • Text
  • PDF
Abstract

HIV is a major driver of Tuberculosis (TB) reactivation. Depletion of CD4+ T cells is assumed to be the basis behind TB reactivation in individuals with latent tuberculosis Infection (LTBI) co-infected with human immunodeficiency virus (HIV). Non-human primates (NHPs) coinfected with a mutant simian immunodeficiency virus (SIVΔGY), that does not cause depletion of tissue CD4+ T cells during infection, failed to reactivate TB. To investigate the contribution of CD4+ T cell depletion relative to other mechanisms of SIV-induced reactivation of LTBI, we used CD4R1 antibody to deplete CD4+ T cells in animals with LTBI without lentiviral infection. We showed that the mere depletion of CD4+ T cells during LTBI was insufficient in generating reactivation of LTBI. Instead, direct cytopathic effects of SIV resulting in chronic immune activation, along with the altered effector T cell phenotypes and dysregulated T cell homeostasis, were likely mediators of reactivation of LTBI. These results revealed important implications for controlling TB in the HIV co-infected individuals.

Authors

Allison N. Bucşan, Ayan Chatterjee, Dhiraj K. Singh, Taylor W. Foreman, Tae-Hyung Lee, Breanna Threeton, Melanie G. Kirkpatrick, Mushtaq Ahmed, Nadia Golden, Xavier Alvarez, James A. Hoxie, Smriti Mehra, Jyothi Rengarajan, Shabaana A. Khader, Deepak Kaushal

×

Caspase-8 modulates physiological and pathological angiogenesis during retina development
Nathalie Tisch, … , Hellmut G. Augustin, Carmen Ruiz de Almodovar
Nathalie Tisch, … , Hellmut G. Augustin, Carmen Ruiz de Almodovar
Published August 27, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122767.
View: Text | PDF

Caspase-8 modulates physiological and pathological angiogenesis during retina development

  • Text
  • PDF
Abstract

During developmental angiogenesis blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether and how cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death-signaling pathway, regulates both cell death via apoptosis and necroptosis. Here we show that expression of Casp-8 in endothelial cells (ECs) was required for proper postnatal retina angiogenesis. EC specific Casp-8 knockout pups (Casp-8ECko) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting and migration independent of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 mitogen-activated protein kinase (MAPK) downstream of receptor-interacting serine/threonine- protein kinase 3 (RIPK3) and destabilization of VE-cadherin at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR), resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECko pups. Taken together, we describe that Casp-8 acts in a cell-death independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.

Authors

Nathalie Tisch, Aida Freire-Valls, Rosario Yerbes, Isidora Paredes, Silvia La Porta, Xiaohong Wang, Rosa Martín-Pérez, Laura Castro, Wendy Wei-Lynn Wong, Leigh Coultas, Boris Strilic, Hermann-Josef Gröne, Thomas Hielscher, Carolin Mogler, Ralf Adams, Peter Heiduschka, Lena Claesson-Welsh, Massimiliano Mazzone, Abelardo López-Rivas, Thomas Schmidt, Hellmut G. Augustin, Carmen Ruiz de Almodovar

×

Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm
Michael Hugelshofer, … , Emanuela Keller, Dominik J. Schaer
Michael Hugelshofer, … , Emanuela Keller, Dominik J. Schaer
Published August 27, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130630.
View: Text | PDF

Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm

  • Text
  • PDF
Abstract

Delayed ischemic neurological deficit (DIND) is a major driver of adverse outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) defining an unmet need for therapeutic development. Cell-free hemoglobin that is released from erythrocytes into the cerebrospinal fluid (CSF) is suggested to cause vasoconstriction and neuronal toxicity and correlates with the occurrence of DIND. Cell-free hemoglobin in the CSF of patients with aSAH disrupted dilatory NO signaling ex vivo in cerebral arteries, which shifted vascular tone balance from dilation to constriction. We found that selective removal of hemoglobin from patient CSF with a haptoglobin-affinity column or its sequestration in a soluble hemoglobin-haptoglobin complex was sufficient to restore physiological vascular responses. In a sheep model, administration of haptoglobin into the CSF inhibited hemoglobin-induced cerebral vasospasm and preserved vascular NO-signaling. We identified two pathways of hemoglobin delocalization from CSF into the brain parenchyma and into the NO-sensitive compartment of small cerebral arteries. Both pathways were critical for hemoglobin-toxicity and were interrupted by the large hemoglobin-haptoglobin complex that inhibited spatial requirements for hemoglobin reactions with NO in tissues. Collectively, our data show that compartmentalization of hemoglobin by haptoglobin provides a novel framework for innovation aimed at reducing hemoglobin-driven neurological damage after subarachnoid bleeding.

Authors

Michael Hugelshofer, Raphael M. Buzzi, Christian A. Schaer, Henning Richter, Kevin Akeret, Vania Anagnostakou, Leila Mahmoudi, Raphael Vaccani, Florence Vallelian, Jeremy W. Deuel, Peter W. Kronen, Zsolt Kulcsar, Luca Regli, Jin Hyen Baek, Ivan S. Pires, Andre F. Palmer, Matthias Dennler, Rok Humar, Paul W. Buehler, Patrick R. Kircher, Emanuela Keller, Dominik J. Schaer

×

Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule
Fei Deng, … , Ming Yang, Yashpal S. Kanwar
Fei Deng, … , Ming Yang, Yashpal S. Kanwar
Published August 22, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129903.
View: Text | PDF

Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule

  • Text
  • PDF
Abstract

Overexpression of myo-inositol oxygenase (MIOX), a proximal tubular enzyme, exacerbates cellular redox injury in acute kidney injury (AKI). Ferroptosis, a newly coined term associated with lipid hydroperoxidation, plays a critical role in the pathogenesis of AKI. Whether or not MIOX exacerbates tubular damage by accelerating ferroptosis in Cisplatin-induced AKI remains elusive. Cisplatin-treated HK-2 cells exhibited notable cell death, which was reduced by ferroptosis inhibitors. Also, alterations in various ferroptosis metabolic sensors, including lipid hydroperoxidation, glutathione peroxidase 4 (GPX4) activity, NADPH and reduced glutathione (GSH) levels, and ferritinophagy, were observed. These perturbations were accentuated by MIOX overexpression, while ameliorated by MIOX knockdown. Likewise, Cisplatin-treated CD1 mice exhibited tubular damage and derangement of renal physiological parameters, which was alleviated by Ferrostatin-1 (Fer-1), a ferroptosis inhibitor. To investigate the relevance of MIOX to ferroptosis, Wild-type (WT) mice, MIOX-overexpressing transgenic (MIOX-TG) mice and MIOX knockout (MIOX-KO) mice were subjected to Cisplatin treatment. In comparison to Cisplatin-treated WT mice, Cisplatin-treated MIOX-TG mice had more severe renal pathological changes and perturbations in ferroptosis metabolic sensors, which were minimal in Cisplatin-treated MIOX-KO mice. In conclusion, these findings indicate that ferroptosis, an integral process in the pathogenesis of Cisplatin-induced AKI, is modulated by the expression profile of MIOX.

Authors

Fei Deng, Isha Sharma, Yingbo Dai, Ming Yang, Yashpal S. Kanwar

×

DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance
Katsuhiro Togami, … , Cory M. Johannessen, Andrew A. Lane
Katsuhiro Togami, … , Cory M. Johannessen, Andrew A. Lane
Published August 22, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128571.
View: Text | PDF

DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance

  • Text
  • PDF
Abstract

The interleukin-3 receptor alpha subunit, CD123, is expressed on many hematologic malignancies including acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN). Tagraxofusp (SL-401) is a CD123-targeted therapy consisting of interleukin-3 fused to a truncated diphtheria toxin payload. Factors influencing response to tagraxofusp other than CD123 expression are largely unknown. We interrogated tagraxofusp resistance in patients and experimental models and found that it was not associated with CD123 loss. Rather, resistant AML and BPDCN cells frequently acquired deficiencies in the diphthamide synthesis pathway, impairing tagraxofusp’s ability to ADP-ribosylate cellular targets. Expression of DPH1, encoding a diphthamide pathway enzyme, was reduced by DNA CpG methylation in resistant cells. Treatment with the DNA methyltransferase inhibitor azacitidine restored DPH1 expression and tagraxofusp sensitivity. We also developed a drug-dependent ADP-ribosylation assay in primary cells that correlated with tagraxofusp activity and may represent an additional novel biomarker. As predicted by these results and our observation that resistance also increased mitochondrial apoptotic priming, we found that the combination of tagraxofusp and azacitidine was effective in patient-derived xenografts treated in vivo. These data have important implications for clinical use of tagraxofusp and led to a phase 1 study combining tagraxofusp and azacitidine in myeloid malignancies.

Authors

Katsuhiro Togami, Timothy Pastika, Jason Stephansky, Mahmoud Ghandi, Amanda L. Christie, Kristen L. Jones, Carl A. Johnson, Ross W. Lindsay, Christopher L. Brooks, Anthony Letai, Jeffrey W. Craig, Olga Pozdnyakova, David M. Weinstock, Joan Montero, Jon C. Aster, Cory M. Johannessen, Andrew A. Lane

×
  • ← Previous
  • 1
  • 2
  • …
  • 190
  • 191
  • 192
  • …
  • 221
  • 222
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts