Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,147 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 165
  • 166
  • 167
  • …
  • 214
  • 215
  • Next →
Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses
Helen R. Wagstaffe, … , Eleanor M. Riley, Martin Goodier
Helen R. Wagstaffe, … , Eleanor M. Riley, Martin Goodier
Published April 21, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132438.
View: Text | PDF

Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses

  • Text
  • PDF
Abstract

Backgroun NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells; these functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. Methods The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analysed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen, and in response to in vitro Ebola glycoprotein stimulation of PBMC isolated before and after vaccination. Results We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whilst IFN-γ secretion was restricted by high concentrations of IL-10. Conclusion This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola GP. Trial registration ClinicalTrials.gov Identifier: NCT02313077 Funding U.K. Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (Grant 115861) and Crucell Holland (now Janssen Vaccines & Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).

Authors

Helen R. Wagstaffe, Elizabeth A. Clutterbuck, Viki Bockstal, Jeroen N. Stoop, Kerstin Luhn, Macaya J. Douoguih, Georgi Shukarev, Matthew D. Snape, Andrew J. Pollard, Eleanor M. Riley, Martin Goodier

×

Neuroimaging of hypothalamic mechanisms related to glucose metabolism in anorexia nervosa and obesity
Joe J. Simon, … , Wolfgang Herzog, Hans-Christoph Friederich
Joe J. Simon, … , Wolfgang Herzog, Hans-Christoph Friederich
Published April 21, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136782.
View: Text | PDF

Neuroimaging of hypothalamic mechanisms related to glucose metabolism in anorexia nervosa and obesity

  • Text
  • PDF
Abstract

Background. Given the heightened tolerance to self-starvation in anorexia nervosa, a hypothalamic dysregulation of energy and glucose homeostasis has been hypothesized. Therefore, we investigated whether hypothalamic reactivity to glucose metabolism is impaired in AN. Methods. Twenty-four participants with AN, 28 normal-weight and 24 healthy participants with obesity underwent 2 magnetic resonance imaging (MRI) sessions in a single-blind, random-order, case-controlled crossover design. We used an intragastric infusion of glucose and water to bypass the cephalic phase of food intake. The responsivity of the hypothalamus and the crosstalk of the hypothalamus with reward-related brain regions were investigated using high-resolution MRI. Results. Normal-weight control participants displayed the expected glucose-induced deactivation of hypothalamic activation, whereas patients with AN and participants with obesity showed blunted hypothalamic reactivity. Compared to normal-weight and obese controls, patients with AN failed to show functional connectivity between the hypothalamus and reward-related brain regions during water relative to glucose. Finally, patients with AN displayed typical baseline levels of peripheral appetite hormones during a negative energy balance. Conclusion. These results indicate that blunted hypothalamic glucose reactivity might be related to the pathophysiology of AN. This provides new insights for future research, as it is an extended perspective of the traditional primary nonhomeostatic understanding of the disease. Funding. This study was supported by a grant from the DFG (SI 2087/2-1).

Authors

Joe J. Simon, Marion A. Stopyra, Esther Mönning, Sebastian C. A. M. Sailer, Nora Lavandier, Lars Kihm, Martin Bendszus, Hubert Preissl, Wolfgang Herzog, Hans-Christoph Friederich

×

HuR/ELAVL1 drives malignant peripheral nerve sheath tumour growth and metastasis
Marta Palomo-Irigoyen, … , Marta Varela-Rey, Ashwin Woodhoo
Marta Palomo-Irigoyen, … , Marta Varela-Rey, Ashwin Woodhoo
Published April 21, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130379.
View: Text | PDF

HuR/ELAVL1 drives malignant peripheral nerve sheath tumour growth and metastasis

  • Text
  • PDF
Abstract

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumours (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumour growth, and strongly supressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/beta-Catenin, YAP/TAZ, Rb-E2F and BET proteins, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.

Authors

Marta Palomo-Irigoyen, Encarnación Pérez-Andrés, Marta Iruarrizaga-Lejarreta, Adrián Barreira Manrique, Miguel Tamayo-Caro, Laura Vila-Vecilla, Leire Moreno-Cugnon, Nagore Beitia Telletxea, Daniela Medrano, David Fernández-Ramos, Juan-Jose Lozano, Satoshi Okawa, José Luis Lavín, Natalia Martin-Martin, James D. Sutherland, Virginia Gutiérrez-de Juan, Monika Gonzalez-Lopez, Nuria Macias-Camara, David Mosén-Ansorena, Liyam Laraba, C. Oliver Hanemann, Emanuela Ercolano, David B. Parkinson, Christopher W. Schultz, Marcos J. Araúzo-Bravo, Alex M. Ascensión, Daniela Gerovska, Haizea Iribar, Ander Izeta, Peter Pytel, Philipp Krastel, Alessandro Provenzani, Pierfausto Seneci, Ruben D. Carrasco, Antonio del Sol, Maria L. Martinez Chantar, Rosa Barrio, Eduard Serra, Conxi Lázaro, Adrienne M. Flanagan, Myriam Gorospe, Nancy Ratner, Arkaitz Carracedo, Ana María Aransay, Marta Varela-Rey, Ashwin Woodhoo

×

Macrophages utilize a bet-hedging strategy for antimicrobial activity in phagolysosomal acidification
Quigly Dragotakes, … , Aviv Bergman, Arturo Casadevall
Quigly Dragotakes, … , Aviv Bergman, Arturo Casadevall
Published April 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133938.
View: Text | PDF

Macrophages utilize a bet-hedging strategy for antimicrobial activity in phagolysosomal acidification

  • Text
  • PDF
Abstract

Microbial ingestion by a macrophage results in the formation of an acidic phagolysosome but the host cell has no information on the pH susceptibility of the ingested organism. This poses a problem for the macrophage and raises the fundamental question of how the phagocytic cell optimizes the acidification process to prevail. We analyzed the dynamical distribution of phagolysosomal pH in murine and human macrophages that had ingested live or dead Cryptococcus neoformans cells, or inert beads. Phagolysosomal acidification produced a range of pH values that approximated normal distributions, but these differed from normality depending on ingested particle type. Analysis of the increments of pH reduction revealed no forbidden ordinal patterns, implying that phagosomal acidification process was a stochastic dynamical system. Using simulation modeling, we determined that by stochastically acidifying a phagolysosome to a pH within the observed distribution, macrophages sacrificed a small amount of overall fitness to reduce their overall variation in fitness. Hence, chance in the final phagosomal pH introduces unpredictability to the outcome of the macrophage-microbe, which implies a bet-hedging strategy that benefits the macrophage. While bet hedging is common in biological systems at the organism level, our results show its use at the organelle and cellular level.

Authors

Quigly Dragotakes, Kaitlin M. Stouffer, Man Shun Fu, Yehonatan Sella, Christine Youn, Olivia Insun Yoon, Carlos M. De Leon-Rodriguez, Joudeh Freij, Aviv Bergman, Arturo Casadevall

×

IL-1β Suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury
Shiqin Xiong, … , Jalees Rehman, Asrar B. Malik
Shiqin Xiong, … , Jalees Rehman, Asrar B. Malik
Published April 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136908.
View: Text | PDF | Corrigendum

IL-1β Suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury

  • Text
  • PDF
Abstract

Unchecked inflammation is a hallmark of inflammatory tissue injury in diseases such as acute respiratory distress syndrome (ARDS). Yet the mechanisms of inflammatory lung injury remain largely unknown. Here we showed that bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced polymicrobial sepsis decreased the expression of transcription factor cAMP Response Element Binding (CREB) in lung endothelial cells. We demonstrated that endothelial CREB was crucial for VE-cadherin transcription and the formation of the normal restrictive endothelial adherens junctions. The inflammatory cytokine IL-1β reduced cAMP generation and CREB-mediated transcription of VE-cadherin. Furthermore, endothelial cell-specific deletion of CREB induced lung vascular injury whereas ectopic expression of CREB in the endothelium prevented the injury. We also observed that rolipram, which inhibits PDE4-mediated hydrolysis of cAMP, prevented endotoxemia-induced lung vascular injury since it preserved CREB-mediated VE-cadherin expression. These data demonstrate the fundamental role of endothelial cAMP-CREB axis in promoting lung vascular integrity and suppressing inflammatory injury. Therefore, strategies aimed at enhancing endothelial CREB-mediated VE-cadherin transcription are potentially useful in preventing sepsis-induced lung vascular injury in ARDS.

Authors

Shiqin Xiong, Zhigang Hong, Long Shuang Huang, Yoshikazu Tsukasaki, Saroj Nepal, Anke Di, Ming Zhong, Wei Wu, Zhiming Ye, XiaoPei Gao, Gadiparthi Rao, Dolly Mehta, Jalees Rehman, Asrar B. Malik

×

Pro-inflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice
Maria Agustina Battistone, … , Dennis Brown, Sylvie Breton
Maria Agustina Battistone, … , Dennis Brown, Sylvie Breton
Published April 14, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134791.
View: Text | PDF

Pro-inflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice

  • Text
  • PDF
Abstract

Ischemic acute kidney injury (AKI), a complication that frequently occurs in hospital settings, is often associated with hemodynamic compromise, sepsis, cardiac surgery or exposure to nephrotoxicants. Here, using a murine renal ischemia-reperfusion injury (IRI) model we show that intercalated cells (ICs) rapidly adopted a pro-inflammatory phenotype post-IRI. During the early phase of AKI, we demonstrate that either blocking the pro-inflammatory P2Y14 receptor located on the apical membrane of ICs, or ablation of the gene encoding the P2Y14 receptor in ICs: 1) inhibited IRI-induced chemokine expression increase in ICs; 2) reduced neutrophil and monocyte renal infiltration; 3) reduced the extent of kidney dysfunction; and 4) attenuated proximal tubule (PT) damage. These observations indicate that the P2Y14 receptor participates in the very first inflammatory steps associated with ischemic AKI. In addition, we show that the concentration of the P2Y14 receptor ligand, uridine diphosphate-glucose (UDP-Glc), was higher in urine samples from intensive care unit patients who developed AKI compared to patients without AKI. In particular, we observed a strong correlation between UDP-Glc concentration and the development of AKI in cardiac surgery patients. Our study identifies the UDP-Glc/P2Y14 receptor axis as a potential target for the prevention and/or attenuation of ischemic-AKI.

Authors

Maria Agustina Battistone, Alexandra C. Mendelsohn, Raul German Spallanzani, Andrew S. Allegretti, Rachel N. Liberman, Juliana Sesma, Sahir Kalim, Susan M. Wall, Joseph V. Bonventre, Eduardo R. Lazarowski, Dennis Brown, Sylvie Breton

×

Exebacase for Staphylococcus aureus bloodstream infection and endocarditis
Vance G. Fowler, Jr., … , Pamela S. Douglas, Cara Cassino
Vance G. Fowler, Jr., … , Pamela S. Douglas, Cara Cassino
Published April 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI136577.
View: Text | PDF

Exebacase for Staphylococcus aureus bloodstream infection and endocarditis

  • Text
  • PDF
Abstract

BACKGROUND Novel therapeutic approaches are critically needed for Staphylococcus aureus bloodstream infections (BSI), particularly for methicillin-resistant S. aureus (MRSA). Exebacase, a first-in-class antistaphylococcal lysin, is a direct lytic agent that is rapidly bacteriolytic, eradicates biofilms, and synergizes with antibiotics. METHODS In this superiority-design study, we randomly assigned 121 patients with S. aureus BSI/endocarditis to receive a single dose of exebacase or placebo. All patients received standard-of-care antibiotics. The primary efficacy endpoint was clinical outcome (responder rate) at Day 14. RESULTS Clinical responder rates at Day 14 were 70.4% and 60.0% in the exebacase + antibiotics and antibiotics alone groups, respectively (difference=10.4, 90% CI [-6.3, 27.2], p-value=0.31), and were 42.8 percentage points higher in the pre-specified exploratory MRSA subgroup (74.1% vs. 31.3%, difference=42.8, 90% CI [14.3, 71.4], ad hoc p value=0.01). Rates of adverse events (AEs) were similar in both groups. No AEs of hypersensitivity to exebacase were reported. Thirty-day all-cause mortality rates were 9.7% and 12.8% in the exebacase + antibiotics and antibiotics alone groups, respectively, with a notable difference in MRSA (3.7% vs. 25.0%, difference= –21.3, 90% CI [-45.1, 2.5], ad hoc p-value=0.06). Among MRSA patients in the United States, median length-of-stay was 4-days shorter and 30-day hospital readmission rates were 48 percentage points lower in the exebacase-treated group compared with antibiotics alone. CONCLUSIONS This study establishes proof-of-concept for exebacase and direct lytic agents as potential therapeutics and supports conduct of a confirmatory study focused on exebacase to treat MRSA BSI.

Authors

Vance G. Fowler, Jr., Anita F. Das, Joy Lipka-Diamond, Raymond Schuch, Roger Pomerantz, Luis Jáuregui-Peredo, Adam Bressler, David C. Evans, Gregory J. Moran, Mark E. Rupp, Robert A. Wise, G. Ralph Corey, Marcus Zervos, Pamela S. Douglas, Cara Cassino

×

T follicular regulatory cells and IL-10 promote food antigen-specific IgE
Markus M. Xie, … , Mark H. Kaplan, Alexander L. Dent
Markus M. Xie, … , Mark H. Kaplan, Alexander L. Dent
Published April 7, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132249.
View: Text | PDF

T follicular regulatory cells and IL-10 promote food antigen-specific IgE

  • Text
  • PDF
Abstract

Food allergies are a major clinical problem and are driven by IgE antibodies specific for food antigens. T follicular regulatory (TFR) cells are a specialized subset of Foxp3+ T cells that modulate antibody responses. Here we analyzed the role of TFR cells in regulating antigen-specific IgE using a peanut-based food allergy model in mice. Peanut-specific IgE titers and anaphylaxis responses were significantly blunted in TFR cell-deficient Foxp3-cre Bcl6-fl/fl mice. Loss of TFR cells led to greatly increased non-specific IgE levels, showing that TFR cells have both helper and suppressor functions on IgE production in the GC that work together to facilitate the production of antigen-specific IgE. Foxp3-cre Pten-fl/fl mice with augmented TFR cell responses had markedly higher levels of peanut-specific IgE, revealing an active helper function by TFR cells on antigen-specific IgE. The helper function of TFR cells for IgE production involves IL-10, and the loss of IL-10 signaling by B cells led to a severely curtailed peanut-specific IgE response, decreased GC B cell survival and loss of GC dark zone B cells after peanut sensitization. We thus reveal that TFR cells have an unexpected helper role in promoting food allergy and are a novel target for drug development.

Authors

Markus M. Xie, Qiang Chen, Hong Liu, Kai Yang, Byunghee Koh, Hao Wu, Soheila J. Maleki, Barry K. Hurlburt, Joan Cook-Mills, Mark H. Kaplan, Alexander L. Dent

×

Notch signaling licenses allergic airway inflammation by promoting Th2 cell lymph node egress
Irma Tindemans, … , Ralph Stadhouders, Rudi W. Hendriks
Irma Tindemans, … , Ralph Stadhouders, Rudi W. Hendriks
Published April 7, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128310.
View: Text | PDF

Notch signaling licenses allergic airway inflammation by promoting Th2 cell lymph node egress

  • Text
  • PDF
Abstract

Allergic asthma is mediated by T helper 2 (Th2) responses to inhaled allergens. Although previous experiments indicated that Notch signaling activates expression of the key Th2 transcription factor Gata3, it remains controversial how Notch promotes allergic airway inflammation. Here we show that T cell-specific Notch deficiency in mice prevented house dust mite-driven eosinophilic airway inflammation and significantly reduced Th2 cytokine production, serum IgE levels and airway hyperreactivity. However, transgenic Gata3 overexpression in Notch-deficient T cells only partially rescued this phenotype. We found that Notch signaling was not required for T cell proliferation or Th2 polarization. Instead, Notch-deficient in vitro polarized Th2 cells showed reduced accumulation in the lungs upon in vivo transfer and allergen challenge, as Notch-deficient Th2 cells were retained in the lung draining lymph nodes. Transcriptome analyses and sequential adoptive transfer experiments revealed that while Notch-deficient lymph node Th2 cells established competence for lung migration, they failed to upregulate the sphingosine 1-phosphate receptor (S1PR1) and its critical upstream transcriptional activator Krüppel-like factor 2 (KLF2). As this KLF2-S1PR1 axis represents the essential cell-intrinsic regulator of T cell lymph node egress, we conclude that the druggable Notch signaling pathway licenses the Th2 response in allergic airway inflammation via promoting lymph node egress.

Authors

Irma Tindemans, Anne van Schoonhoven, Alex KleinJan, Marjolein J.W. de Bruijn, Melanie Lukkes, Menno van Nimwegen, Anouk van den Branden, Ingrid M. Bergen, Odilia B. J. Corneth, Wilfred F.J. van IJcken, Ralph Stadhouders, Rudi W. Hendriks

×

Deployment of convalescent plasma for the prevention and treatment of COVID-19
Evan M. Bloch, … , Jeffrey A. Bailey, Aaron A.R. Tobian
Evan M. Bloch, … , Jeffrey A. Bailey, Aaron A.R. Tobian
Published April 7, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138745.
View: Text | PDF

Deployment of convalescent plasma for the prevention and treatment of COVID-19

  • Text
  • PDF
Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease (COVID-19), has spurred a global health crisis. To date, there are no proven options for prophylaxis for those who have been exposed to SARS-CoV-2, nor therapy for those who develop COVID-19. Immune (i.e. “convalescent”) plasma refers to plasma that is collected from individuals, following resolution of infection and development of antibodies. Passive antibody administration through transfusion of convalescent plasma may offer the only short-term strategy to confer immediate immunity to susceptible individuals. There are numerous examples, where convalescent plasma has been used successfully as post-exposure prophylaxis and/or treatment of infectious diseases, including other outbreaks of coronaviruses (e.g., SARS-1, Middle East Respiratory Syndrome [MERS]). Convalescent plasma has also been used in the COVID-19 pandemic; limited data from China suggest clinical benefit, including radiological resolution, reduction in viral loads and improved survival. Globally, blood centers have robust infrastructure to undertake collections and construct inventories of convalescent plasma to meet the growing demand. Nonetheless, there are nuanced challenges, both regulatory and logistical, spanning donor eligibility, donor recruitment, collections and transfusion itself. Data from rigorously controlled clinical trials of convalescent plasma are also few, underscoring the need to evaluate its use objectively for a range of indications (e.g., prevention vs treatment) and patient populations (e.g., age, comorbid disease). We provide an overview of convalescent plasma, from evidence of benefit, regulatory considerations, logistical work flow and proposed clinical trials, as scale up is brought underway to mobilize this critical resource.

Authors

Evan M. Bloch, Shmuel Shoham, Arturo Casadevall, Bruce S. Sachais, Beth Shaz, Jeffrey L. Winters, Camille van Buskirk, Brenda J. Grossman, Michael Joyner, Jeffrey P. Henderson, Andrew Pekosz, Bryan Lau, Amy Wesolowski, Louis Katz, Hua Shan, Paul G. Auwaerter, David Thomas, David J. Sullivan, Nigel Paneth, Eric Gehrie, Steven Spitalnik, Eldad Hod, Lewis Pollack, Wayne T. Nicholson, Liise-anne Pirofski, Jeffrey A. Bailey, Aaron A.R. Tobian

×
  • ← Previous
  • 1
  • 2
  • …
  • 165
  • 166
  • 167
  • …
  • 214
  • 215
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts