BACKGROUND. Among antiretroviral therapy (ART)-suppressed people with HIV (PWH), women have higher levels of some inflammatory markers than men, but the broader effect of sex on the inflammatory proteome, and whether these differences are modified by age, remains unclear. METHODS. 363 plasma inflammatory protein levels (Olink Inflammation Explore) were assessed in ART-suppressed PWH sampled from the Center for AIDS Research Network of Integrated Clinical Systems (CNICS). The relationship between sex and 363 plasma proteins – including 22 in the interferon-α response pathway – was assessed with linear regression models adjusting for confounders, assessing interactions by age. FINDINGS. Of 922 participants, 162 (18%) were female. The median age was 47, above which the majority of women had undetectable plasma anti-Müllerian hormone levels, a biomarker of ovarian reserve. Age impacted the influence of sex on the inflammatory proteome. Older age (>47) was associated with greater increases among women than men in 194 proteins. Interferon-α response proteins were higher in men in those ≤ 47 (P = 0.024), but higher in women in those > 47 (P = 0.005, p-interaction < 0.001). Among the 131 proteins associated with mortality risk (q < 0.05), only 5 differed by sex among those ≤ 47, while 79 differed by sex in those > 47, with nearly all being higher in women . Women had decreased mortality than men ≤47 (P < 0.001) but had similar mortality > 47 (P = 0.84). INTERPRETATION. The menopausal transition appears to have a dramatic effect on systemic Type I interferon responses and the broader inflammatory proteome in women with HIV. Among older PWH, women have greater inflammation than men, including the majority of proteins linked with mortality risk.
Rebecca A. Abelman, Samuel R. Schnittman, Natalia Faraj Murad, Adam Olshen, Gabriele B. Beck-Engeser, Noah Aquino, Gabrielle C. Ambayec, Edward R. Cachay, Joseph J. Eron, Michael Saag, Robin M. Nance, Joseph A. Delaney, Stephanie A. Ruderman, Richard D. Moore, Kenneth H. Mayer, Jeffrey M. Jacobson, Heidi M. Crane, Peter W. Hunt
Autoimmune factor XIII (FXIII) deficiency is a rare hemorrhagic disease characterized by severe bleeding and a high mortality rate. However, the pathogenesis of this disease remains unclear. Currently, FXIII consumption caused by infections is becoming increasingly common. Our clinical investigation, combined with in vivo experiments, revealed that patients and mice with autoimmune FXIII deficiency displayed complement dysfunction, and that pathogenic infection and autoantibody generation were positively correlated. Further analysis revealed the presence of combined FXIII-C3 autoantibodies in patients with autoimmune FXIII deficiency. These combined autoantibodies neutralize FXIII, causing excessive bleeding, and form a complex with C3, inhibiting complement activation and complement-mediated adaptive immune responses. Therefore, compromised immune responses increase host susceptibility to pathogenic Candida albicans infections. Consequently, uncontrolled exogenous fungal infections further activate platelets and cause platelet-related CD40 ligand (CD40L) release. By interacting with the CD40 on the B cell surface, the released CD40L further promotes auto-reactive B cell activation to produce more autoantibodies, thereby forming a self-amplification loop for the progressive consumption of FXIII. We believe that this study provides a perspective on disease pathogenesis and therapeutic guidance for better treatment of autoimmune FXIII deficiency.
Shanshan Luo, Jun Deng, Yue Liu, Lv Xiong, Wanting Wang, Chaofan Wang, Yaohua Cai, Yajie Ding, Bahgat Fayed, Zhipeng Cheng, Lu Zhang, Min Zhang, Jun Fang, Gensheng Zhang, Rui Zhu, Haiqiang Jiang, Yunlun Li, Kun Huang, Xiang Cheng, Liang V. Tang, Chunyan Sun, Heng Mei, Peter F. Zipfel, Huafang Wang, Yadan Wang, Desheng Hu, Yu Hu
The role of the tumor immune microenvironment (TIME) in modulating responses to antiestrogen therapy in hormone receptor-positive (HR+) breast cancers remains unclear. We analyzed pre- and on-treatment biopsies from patients with HR+ breast cancer treated with letrozole to induce estrogen deprivation (ED). Stromal tumor-infiltrating lymphocytes, assessed by H&E-staining, and immune-related gene sets, including IFNɣ signaling, measured by RNA sequencing, were increased in ED-resistant tumors. Cyclic immunofluorescence and spatial transcriptomics revealed an abundance of CD8+ T cells and enhanced antigen processing and immune gene signatures in ED-resistant tumors. In this group, the expression of CXCL9, CXCL10, and CXCL11 — chemokine genes involved in CD8+ T cell recruitment — and the CXCR3 receptor were upregulated both before and after letrozole. CXCL11 levels were higher in conditioned media from HR+ breast cancer cells co-cultured with CD8+ T cells. Both recombinant CXCL11 and co-culture with CD8+ T cells promoted MCF7 and T47D cell growth in estrogen-free conditions. Finally, deletion combined with silencing of the CXCL11 receptors CXCR3 and CXCR7 in MCF7 cells impaired proliferation in response to exogenous CXCL11 and to co-culture with CD8+ T cells in estrogen-free conditions. These findings suggest that CD8+ T cell-associated CXCL11 in the TIME modulates the response of HR+ breast cancer cells to estrogen suppression.
Fabiana Napolitano, Yunguan Wang, Dhivya R. Sudhan, Paula I. Gonzalez-Ericsson, Luigi Formisano, Nisha Unni, Shahbano Shakeel, James Z. Zhu, Khushi Ahuja, Lei Guo, María Rosario Chica-Parrado, Yuki Matsunaga, Pamela Luna, Chang-Ching A. Lin, Yasuaki Uemoto, Kyung-Min Lee, Hongli Ma, Nathaniel J. Evans, Alberto Servetto, Saurabh Mendiratta, Spencer D. Barnes, Roberto Bianco, Yisheng V. Fang, Lin Xu, Jeon Lee, Tao Wang, Justin M. Balko, Gordon B. Mills, Marilyne Labrie, Ariella B. Hanker, Carlos L. Arteaga
Adoptive cell therapy (ACT) relies on durable and functional T cells to mediate tumor clearance. Th9 cells are a metabolically fit CD4+ T cell subset with strong persistence but limited cytotoxicity. Here, we identified endomelipeptide A (EpA), a cyclic peptide isolated from Ganoderma lucidum–associated endophytic fungi, as a potent enhancer of Th9 differentiation. EpA promoted a cytotoxic Th9 phenotype with enhanced mitochondrial function and metabolic fitness. Mechanistically, EpA dually targeted ZAP70 and SREBP1, coupling T cell receptor (TCR) signaling activation with lipid metabolism suppression. EpA-treated Th9 cells mediated robust, CD8+ T cell–dependent tumor control and enhanced the efficacy of human Th9 CAR-T therapy in vivo. These findings establish EpA as a distinct cyclic peptide that reprograms Th9 cells and provides a potential approach to boost ACT efficacy.
Wenli Zhao, Yang Zhou, Yuyang Chen, Yicheng Sun, Jiaxin Tang, Yihan Zhu, Jie Ren, Tianxu Du, Handuo Wang, Yuan Gao, Yu Hu, Ling Jiang, Tomohiko Ohwada, Qi Luo, Enguang Bi
Vinculin (VCL), a linker between cells and their environment, has rarely been linked to disease. This study examines the role of VCL in the development of the enteric nervous system (ENS) and its relationship to Hirschsprung disease (HSCR). Using whole-genome sequencing and in vitro assays, we identified four VCL mutations associated with HSCR, most causing loss of function. Neural crest-specific Vcl knock-out mice (Vcl cKO) displayed ENS defects resembling short-segment HSCR, including partial colonic aganglionosis and abnormal gut musculature. Single-cell transcriptomics revealed dysregulation of genes involved in neuronal differentiation and MAPK signaling. Spatial RNA sequencing revealed reduced ENS-mesenchyme interactions in Vcl cKO mice, accompanied by significant disruption of the Pleiotrophin (PTN) pathway; Ptn knock-out mice exhibited phenotypes similar to those of Vcl cKO mice, underscoring the importance of ENS-mesenchyme crosstalk. VCL works as a hub gene crucial for cell connection and signaling pathways essential for ENS formation. VCL deficiency subtly impacts various developmental stages and neighboring cells, cumulatively leading to a phenotype similar to short-segment HSCR. This research highlights the role of VCL in maintaining cellular interactions and signaling pathways, such as MAPK and PTN, which are crucial for ENS development and may inform therapeutic targets for ENS disorders.
Lifang Liu, Xixin Wang, Mingxuan Liang, Peiting Li, Cindy Yifei Yan, Patrick Ho-Yu Chung, Kenneth Kak-Yuen Wong, Asif Javed, Maria-Mercedes Garcia-Barcelo, Elly Sau-Wai Ngan
EGFR-mutant lung adenocarcinomas (LUADs) that are vulnerable to the EGFR antagonist Osimertinib (Osi) eventually relapse owing in part to the emergence of drug tolerant persister (DTP) cells that arise through epigenetic mechanisms. Intra-tumoral DTP cells can herald a worse clinical outcome, but the way in which DTP cells influence LUAD progression remains unclear. Osi-resistant (OR) cells exhibit typical DTP cell features, including a propensity to undergo senescence and epithelial-to-mesenchymal transition (EMT), which can activate heightened secretory states. Therefore, we postulated that OR cells influence LUAD progression through paracrine mechanisms. To test this hypothesis, we utilized congenic pairs of EGFR-mutant LUAD cell lines in which drug naive (DN) cells were rendered OR by chronic exposure to escalating doses of Osi. Co-cultured in vitro or co-injected into mice, paracrine signals from OR cells enhanced the growth and metastatic properties of DN cells. EMT and senescence activated non-overlapping secretomes, and OR cells governed DN cells by undergoing EMT but not senescence. Mechanistically, Osi rapidly increased TGFβ2 levels to initiate EMT, which triggered a Golgi remodeling process that accelerated the biogenesis and anterograde trafficking of secretory vesicles. The pro-tumorigenic activity of OR cells was diminished by depletion of EMT-dependent secreted proteins or the EMT-activating transcription factor ZEB1. These findings identify paracrine mechanisms by which OR cells drive LUAD progression.
Madhurima Ghosh, Chao Wu, Abhishek Kumar, Monique B. Nilsson, John V. Heymach, Weina Zhao, Jiang Yu, Xin Liu, Na Ding, Shike Wang, Guan-Yu Xiao, Angelo Chen, Kate V. Grimley, William K. Russell, Chad J. Creighton, Xiaochao Tan, Jonathan M. Kurie
Androgen deprivation therapy is the primary treatment for advanced prostate tumors. While initially effective, tumor progression to the therapy-resistant stage is inevitable. Paradoxically, UDP-glucuronosyltransferase 2B17 (UGT2B17), the key enzyme responsible for androgen catabolism in prostate tumor cells, is upregulated in therapy-resistant tumors, though its role in tumor progression remains unclear. Here, we demonstrate that UGT2B17 possesses multiple oncogenic functions independent of androgen catabolism. It modulates protein-folding pathways, allowing tumor cells to endure therapy-induced stress. UGT2B17 also regulates transcription associated with cell division and the DNA damage response, enabling unchecked cell proliferation. Targeting the newly identified UGT2B17 functions using a combination of inhibitors reduces tumor growth in therapy-resistant tumor models, highlighting a promising therapeutic strategy. Collectively, these findings reveal a mechanism by which prostate tumors exploit UGT2B17 to evade therapy and highlight its potential as a therapeutic target in advanced prostate cancer.
Tingting Feng, Ning Xie, Lin Gao, Qiongqiong Jia, Sonia Kung, Tunc Morova, Yinan Li, Lin Wang, Ladan Fazli, Louis Lacombe, Chantal Guillemette, Eric Lévesque, Nathan A. Lack, Jianfei Qi, Bo Han, Xuesen Dong
BACKGROUND. Critically ill patients with acute respiratory distress syndrome (ARDS) and sepsis exhibit distinct inflammatory phenotypes with divergent clinical outcomes, but the underlying molecular mechanisms remain poorly understood. These phenotypes, derived from clinical data and protein biomarkers, were associated with metabolic differences in a pilot study. METHODS. We performed integrative multi-omics analysis of blood samples from 160 ARDS patients in the ROSE trial, randomly selecting 80 patients from each latent class analysis-defined inflammatory phenotype (Hyperinflammatory and Hypoinflammatory) with phenotype probability >0.9. Untargeted plasma metabolomics and whole blood transcriptomics at Day 0 and Day 2 were analyzed using multi-modal factor analysis (MEFISTO). The primary outcome was 90-day mortality, with validation in an independent critically ill sepsis cohort (EARLI). RESULTS. Multi-omics integration revealed four molecular signatures associated with mortality: (1) enhanced innate immune activation coupled with increased glycolysis (associated with Hyperinflammatory phenotype), (2) hepatic dysfunction and immune dysfunction paired with impaired fatty acid beta-oxidation (associated with Hyperinflammatory phenotype), (3) interferon program suppression coupled with altered mitochondrial respiration (associated with Hyperinflammatory phenotype), and (4) redox impairment and cell proliferation pathways (not associated with inflammatory phenotype). These signatures persisted through Day 2 of trial enrollment. Within-phenotype analysis revealed distinct mortality-associated pathways in each group. All molecular signatures were validated in the independent EARLI cohort. CONCLUSIONS. Inflammatory phenotypes of ARDS reflect distinct underlying biological processes with both phenotype-specific and phenotype-independent pathways influencing patient outcomes, all characterized by mitochondrial dysfunction. These findings suggest potential therapeutic targets for precise treatment strategies in critical illness. FUNDING. This work is the result of NIH funding.
Narges Alipanah-Lechner, Lucile Neyton, Pratik Sinha, Carolyn Leroux, Kim Bardillon, Sidney A. Carrillo, Suzanna Chak, Olivia Chao, Taarini Hariharan, Carolyn Hendrickson, Kirsten Kangelaris, Charles R. Langelier, Deanna Lee, Chelsea Lin, Kathleen Liu, Liam Magee, Angelika Ringor, Aartik Sarma, Emma Schmiege, Natasha Spottiswoode, Kathryn Sullivan, Melanie F. Weingart, Andrew Willmore, Hanjing Zhuo, Angela J. Rogers, Kathleen A. Stringer, Michael A. Matthay, Carolyn S. Calfee
GATA6 is a master regulator of differentiation in the pancreas and its expression levels determine the two main molecular subtypes of pancreatic cancer. High GATA6 contributes to the “classical” pancreatic cancer subtype, which is associated with a higher degree of tumor differentiation and better disease prognosis. However, why GATA6 expression varies across pancreatic cancers and what regulate GATA6 expression remain elusive. Here we report that the oncogenic KRAS-activated ERK signaling suppresses GATA6 transcription in pancreatic cancers. GATA6 mRNA levels inversely correlated with KRAS/ERK activity in pancreatic tumors. A genome-wide CRISPR screen in a GATA6-EGFP reporter knockin cell line identified JUNB as the ERK-regulated transcriptional repressor for GATA6. Active ERK stabilizes JUNB protein while KRAS/ERK inhibition led to ubiquitin-independent proteasomal degradation of JUNB and increased transcription of GATA6. Up-regulation of GATA6 enhanced chemosensitivity of pancreatic cancer cells and KRAS/ERK inhibitors synergized with chemotherapy in a GATA6-dependent manner. Our study identifies how oncogenic KRAS/ERK signaling suppresses GATA6 to cause dedifferentiation in pancreatic cancer. Combining KRAS/ERK inhibitors with standard-of-care chemotherapies could be a promising therapeutic strategy for treating pancreatic cancers.
Zheng Zhong, Xinang Cao, Pei-Ju Liao, Raman Sethi, Jeffrey A. Klomp, Clint A. Stalnecker, Jinmiao Chen, Yue Wan, Channing J. Der, David M. Virshup
During vascular injury, platelets are essential for halting bleeding and recruiting neutrophils to prevent microbial invasion. However, in antibody-mediated autoimmune diseases occurring without vascular damage, neutrophils infiltrate tissues and contribute to pathology. Here, we investigated whether the dependence of neutrophils on platelets is conserved in the context of antibody-driven inflammation. Using human cells from individuals with rheumatoid arthritis and a microfluidic system mimicking physiological shear over IgG-containing immune complexes, we demonstrate that despite expressing Fc receptors, neutrophils require platelets to stably adhere to immune complexes under flow. Platelet FcγRIIA binding was critical for resisting shear stress, while neutrophils used FcγRIIA and FcγRIIIB for immune complex recognition. Platelet P-selectin binding to neutrophil PSGL-1 was essential for recruitment, whereas Mac-1 was dispensable. In a mouse model of autoantibody-mediated arthritis, intravital imaging confirmed that neutrophil recruitment critically relies on PSGL-1. Importantly, expression of FcyRIIA aggravated arthritis, and blockade of PSGL-1 in these mice, but not of Mac-1, abrogated both the platelet and neutrophil interactions and disease. These findings identify key molecular interactions in platelet–neutrophil cooperation and reveal that platelets are essential enablers of FcR-mediated neutrophil adhesion in antibody-driven inflammation.
Marie Bellio, Isabelle Allaeys, Etienne Doré, Myriam Vaillancourt, Tania Lévesque, Mélina Monteil, Nicolas Vallières, Philippe Desaulniers, Nicolas Bertrand, Valance A. Washington, Yotis Senis, Steve Lacroix, Paul Fortin, Clémence Belleannée, Eric Boilard
No posts were found with this tag.