Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neural peptidase regulates itch

Chronic itch is a common symptom and complaint for many dermatological patients. While some patients find relief with antihistamines, many do not, and the underlying pathways responsible for itch are poorly understood. In this episode, Martin Steinhoff details the identification of endothelin–converting enzyme 1 (ECE-1) as a key regulator of endothelin (ET-1), which evokes a histamine-independent pruritus through activation of ERK1/2. In murine itch models, scratching behavior was enhanced by pharmacological inhibition of ECE-1 and ameliorated by administration of an ERK1/2 inhibitor. Furthermore, this ECE-1/ER-1/ERK1/2 axis was upregulated in patients with prurigo nodularis, suggesting that this pathway has potential as a therapeutic target to relieve chronic itch.

Published May 8, 2014, by The JCI

Video Abstracts

Related articles

Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus
Makiko Kido-Nakahara, … , Masutaka Furue, Martin Steinhoff
Makiko Kido-Nakahara, … , Masutaka Furue, Martin Steinhoff
Published May 8, 2014
Citation Information: J Clin Invest. 2014;124(6):2683-2695. https://doi.org/10.1172/JCI67323.
View: Text | PDF
Research Article Neuroscience

Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

  • Text
  • PDF
Abstract

In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans.

Authors

Makiko Kido-Nakahara, Jörg Buddenkotte, Cordula Kempkes, Akihiko Ikoma, Ferda Cevikbas, Tasuku Akiyama, Frank Nunes, Stephan Seeliger, Burcu Hasdemir, Christian Mess, Timo Buhl, Mathias Sulk, Frank-Ulrich Müller, Dieter Metze, Nigel W. Bunnett, Aditi Bhargava, Earl Carstens, Masutaka Furue, Martin Steinhoff

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts