Both Wired, and redOrbit cover “Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication” by Ivona Pandrea and colleagues. Read the companion Commentary “Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection” by Liang Shan and Robert Siliciano.
The Free Press Journal and redOrbit report on “PDE5 inhibitor efficacy is estrogen dependent in female heart disease” by Eiki Takimoto and colleagues. Don’t miss the accompanying Commentary “Sex, drugs, and trial design: sex influences the heart and drug responses" by Elizabeth Murphy and Charles Steenbergen.
Inhibition of cGMP-specific phosphodiesterase 5 (PDE5) ameliorates pathological cardiac remodeling and has been gaining attention as a potential therapy for heart failure. Despite promising results in males, the efficacy of the PDE5 inhibitor sildenafil in female cardiac pathologies has not been determined and might be affected by estrogen levels, given the hormone’s involvement in cGMP synthesis. Here, we determined that the heart-protective effect of sildenafil in female mice depends on the presence of estrogen via a mechanism that involves myocyte eNOS–dependent cGMP synthesis and the cGMP-dependent protein kinase Iα (PKGIα). Sildenafil treatment failed to exert antiremodeling properties in female pathological hearts from Gαq-overexpressing or pressure-overloaded mice after ovary removal; however, estrogen replacement restored the effectiveness of sildenafil in these animals. In females, sildenafil-elicited myocardial PKG activity required estrogen, which stimulated tonic cardiomyocyte cGMP synthesis via an eNOS/soluble guanylate cyclase pathway. In contrast, eNOS activation, cGMP synthesis, and sildenafil efficacy were not estrogen dependent in male hearts. Estrogen and sildenafil had no impact on pressure-overloaded hearts from animals expressing dysfunctional PKGIα, indicating that PKGIα mediates antiremodeling effects. These results support the importance of sex differences in the use of PDE5 inhibitors for treating heart disease and the critical role of estrogen status when these agents are used in females.
Hideyuki Sasaki, Takahiro Nagayama, Robert M. Blanton, Kinya Seo, Manling Zhang, Guangshuo Zhu, Dong I. Lee, Djahida Bedja, Steven Hsu, Osamu Tsukamoto, Seiji Takashima, Masafumi Kitakaze, Michael E. Mendelsohn, Richard H. Karas, David A. Kass, Eiki Takimoto
Preclinical studies indicate that the phosphodiesterase 5 (PDE5) inhibitor sildenafil is protective against hypertrophy-induced cardiac remodeling. Despite an initial clinical study demonstrating sildenafil-dependent amelioration of pathological remodeling, the cardioprotective effect of this drug was not significant in a large placebo-controlled clinical trail. In this issue, Sasaki and colleagues reveal that the efficacy of PDE5 inhibition in female mice requires estrogen. Induction of cardiac stress in male and intact female mice resulted in increased activation of protein kinase G (PKG) signaling, which was further enhanced by sildenafil. PKG activity was not enhanced in ovariectomized (OVX) female mice as a result of cardiac stress, but administration of estrogen restored PKG activation and enhancement by sildenafil. These data highlight the importance of considering sex-specific differences and drug responses in clinical trial design.
Elizabeth Murphy, Charles Steenbergen
Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.
Jan Kristoff, George Haret-Richter, Dongzhu Ma, Ruy M. Ribeiro, Cuiling Xu, Elaine Cornell, Jennifer L. Stock, Tianyu He, Adam D. Mobley, Samantha Ross, Anita Trichel, Cara Wilson, Russell Tracy, Alan Landay, Cristian Apetrei, Ivona Pandrea
Chronic immune activation is a key factor in HIV-1 disease progression. The translocation of microbial products from the intestinal lumen into the systemic circulation occurs during HIV-1 infection and is associated closely with immune activation; however, it has not been determined conclusively whether microbial translocation drives immune activation or occurs as a consequence of HIV-1 infection. In an important study in this issue of the
Liang Shan, Robert F. Siliciano