Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Unveiling mechanisms underlying kidney function changes during sex hormone therapy
Sarah A. van Eeghen, … , Daniël H. van Raalte, Natalie J. Nokoff
Sarah A. van Eeghen, … , Daniël H. van Raalte, Natalie J. Nokoff
Published April 7, 2025
Citation Information: J Clin Invest. 2025;135(9):e190850. https://doi.org/10.1172/JCI190850.
View: Text | PDF
Clinical Research and Public Health Endocrinology Nephrology Article has an altmetric score of 8

Unveiling mechanisms underlying kidney function changes during sex hormone therapy

  • Text
  • PDF
Abstract

BACKGROUND Men with chronic kidney disease (CKD) experience faster kidney function decline than women. Studies in individuals undergoing sex hormone therapy suggest a role for sex hormones, as estimated glomerular filtration rate (eGFR) increases with feminizing therapy and decreases with masculinizing therapy. However, effects on measured GFR (mGFR), glomerular and tubular function, and involved molecular mechanisms remain unexplored.METHODS This prospective, observational study included individuals initiating feminizing (estradiol and antiandrogens; n = 23) or masculinizing (testosterone; n = 21) therapy. Baseline and 3-month assessments included mGFR (iohexol clearance), kidney perfusion (para-aminohippuric acid clearance), tubular injury biomarkers, and plasma proteomics.RESULTS During feminizing therapy, mGFR and kidney perfusion increased (+3.6% and +9.1%, respectively; P < 0.05) without increased glomerular pressure. Tubular injury biomarkers, including urine neutrophil gelatinase-associated lipocalin, epidermal growth factor (EGF), monocyte chemoattractant protein-1, and chitinase 3-like protein 1 (YKL-40), decreased significantly (–53%, –42%, –45%, and –58%, respectively). During masculinizing therapy, mGFR and kidney perfusion remained unchanged, but urine YKL-40 and plasma tumor necrosis factor receptor 1 (TNFR-1) increased (+134% and +8%, respectively; P < 0.05). Proteomic analysis revealed differential expression of 49 proteins during feminizing and 356 proteins during masculinizing therapy. Many kidney-protective proteins were positively associated with estradiol and negatively associated with testosterone, including proteins involved in endothelial function (SFRP4, SOD3), inflammation reduction (TSG-6), and maintaining kidney tissue structure (agrin).CONCLUSION Sex hormones influence kidney physiology, with estradiol showing protective effects on glomerular and tubular function, while testosterone predominantly exerts opposing effects. These findings emphasize the role of sex hormones in sexual dimorphism observed in kidney function and physiology and suggest new approaches for sex-specific precision medicine.TRIAL REGISTRATION Dutch Trial Register (ID: NL9517); ClinicalTrials.gov (ID: NCT04482920).

Authors

Sarah A. van Eeghen, Laura Pyle, Phoom Narongkiatikhun, Ye Ji Choi, Wassim Obeid, Chirag R. Parikh, Taryn G. Vosters, Irene G.M. van Valkengoed, Merle M. Krebber, Daan J. Touw, Martin den Heijer, Petter Bjornstad, Daniël H. van Raalte, Natalie J. Nokoff

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 3 X users
1 readers on Mendeley
See more details