Maladaptive fear generalization is one of the hallmarks of trauma-related disorders. The endocannabinoid 2-arachidonoylglycerol (2-AG) is crucial for modulating anxiety, fear, and stress adaptation but its role in balancing fear discrimination versus generalization is not known. To address this, we used a combination of plasma endocannabinoid measurement and neuroimaging from a childhood maltreatment-exposed and non-exposed mixed population combined with human and rodent fear conditioning models. Here we show that 2-AG levels are inversely associated with fear generalization at the behavioral level in both mice and humans. In mice, 2-AG depletion increases the proportion of neurons, and the similarity between neuronal representations, of threat-predictive and neutral stimuli within prelimbic prefrontal cortex neuronal ensembles. In humans, increased dorsolateral prefrontal cortical-amygdala resting state connectivity is inversely correlated with fear generalization. These data provide convergent cross-species evidence that 2-AG is a key regulator of fear generalization and further support the notion that 2-AG deficiency could represent a trauma-related disorder susceptibility endophenotype.
Luis E. Rosas-Vidal, Saptarnab Naskar, Leah M. Mayo, Irene Perini, Rameen Masroor, Megan Altemus, Liorimar Ramos-Medina, S. Danyal Zaidi, Hilda Engelbrektsson, Puja Jagasia, Markus Heilig, Sachin Patel
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.