There is increasing evidence that bacterial superantigens contribute to inflammation and T cell responses in psoriasis. Psoriatic inflammation entails a complex series of inductive and effector processes that require the regulated expression of various proinflammatory genes, many of which require NF-κB for maximal trans-activation. PS-519 is a potent and selective proteasome inhibitor based upon the naturally occurring compound lactacystin, which inhibits NF-κB activation by blocking the degradation of its inhibitory protein IκB. We report that proteasome inhibition by PS-519 reduces superantigen-mediated T cell–activation in vitro and in vivo. Proliferation was inhibited along with the expression of very early (CD69), early (CD25), and late T cell (HLA-DR) activation molecules. Moreover, expression of E-selectin ligands relevant to dermal T cell homing was reduced, as was E-selectin binding in vitro. Finally, PS-519 proved to be therapeutically effective in a SCID-hu xenogeneic psoriasis transplantation model. We conclude that inhibition of the proteasome, e.g., by PS-519, is a promising means to treat T cell–mediated disorders such as psoriasis.
Thomas M. Zollner, Maurizio Podda, Christine Pien, Peter J. Elliott, Roland Kaufmann, Wolf-Henning Boehncke
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.