Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Dichloroacetate inhibits glycolysis and augments insulin-stimulated glycogen synthesis in rat muscle.
A S Clark, … , M A Goheer, R T Curnow
A S Clark, … , M A Goheer, R T Curnow
Published February 1, 1987
Citation Information: J Clin Invest. 1987;79(2):588-594. https://doi.org/10.1172/JCI112851.
View: Text | PDF
Research Article

Dichloroacetate inhibits glycolysis and augments insulin-stimulated glycogen synthesis in rat muscle.

  • Text
  • PDF
Abstract

The decrease in plasma lactate during dichloroacetate (DCA) treatment is attributed to stimulation of lactate oxidation. To determine whether DCA also inhibits lactate production, we measured glucose metabolism in muscles of fed and fasted rats incubated with DCA and insulin. DCA increased glucose-6-phosphate, an allosteric modifier of glycogen synthase, approximately 50% and increased muscle glycogen synthesis and glycogen content greater than 25%. Lactate release fell; inhibition of glycolysis accounted for greater than 80% of the decrease. This was associated with a decrease in intracellular AMP, but no change in citrate or ATP. When lactate oxidation was increased by raising extracellular lactate, glycolysis decreased (r = - 0.91), suggesting that lactate oxidation regulates glycolysis. When muscle lactate production was greatly stimulated by thermal injury, DCA increased glycogen synthesis, normalized glycogen content, and inhibited glycolysis, thereby reducing lactate release. The major effect of DCA on lactate metabolism in muscle is to inhibit glycolysis.

Authors

A S Clark, W E Mitch, M N Goodman, J M Fagan, M A Goheer, R T Curnow

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts