Isolated kidney mitochondria prepared from Vitamin D-deficient chicks catalyze the conversion of 25-hydroxyvitamin D3 to 1,25 dihydroxyvitamin D3. It wasfound that changes in the concentrations of Ca-2plus, HPO4-2minus, and Hplus altered synthesis in an interrelated fashion. Increasing the Ca-2plus concentration from 10-6 to 10-5 M caused a four- to fivefold increase in 1 alpha-hydroxylase activity when the medium pH was between 6.5 and 7.0. increasing the [Ca2+] to 10-4 M caused to furhter stimulation. At higher pH values, Ca-2plus had little effect upon 1 alpha-hydroxylase activity. In the absence of calcium [Ca2+] less than or equal to 10-7 M), a change in pH from 6.5 to 7.1 had no effect upon 1 alpha-hydroxylase activity in the presence of 10-5 M calcium, increasing the medium pH had a biphasic effect. An increase in pH from 6.5 to 6.9 caused a 1.5-fold increase in 1 alpha-hydroxylase activity, but a further increase of the pH to 7.1 caused a profound decrease in rate of hydroxylation to approximately 20% of the peak value. Neither 10-5 M LaC13 nor 10 mug/ml of oligomycin altered the effects of Ca2+ upon hydroxylate activity. However, the effect of calcium was blocked by 2.5 times 10-5 M ruthenium red, 0.83 mug/ml of antimycin A, and 500 muM dinitrophenol. The clcium ionophore, A23187, decreased but did not prevent the stimulatory effect of calcium. These data are consistent with the concept that the [Ca2+ in the mitochondrial matrix space is of importance in regulating the 1 alpha-hydroxylase. Phosphate exerted a biphasic effect on 1,25(OH)2D3 production with maximal stimulation (approximately twofold) at 1-3 mM. Calcium enhanced the stimulation by phosphate at all concentrations studied. The presence of potassium modified the interrelated effects of calcium and phosphate in two ways: 10-3 M calcium blocked the stimulation by phosphate; and in the presence of phosphate, 10-3 M calcium resulted in less 1,25(OH)2D3 production by production by isolated mitochondria are qualitatively similar to the effects of these ions on 1,25(OH)2D3 production yb isolated renal tubules.
D D Bikle, E W Murphy, H Rasmussen
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.