Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 5

See more details

Referenced in 1 policy sources
Posted by 3 X users
On 2 Facebook pages
167 readers on Mendeley
  • Article usage
  • Citations to this article (357)

Advertisement

Research Article Free access | 10.1172/JCI118803

Contributions of gluconeogenesis to glucose production in the fasted state.

B R Landau, J Wahren, V Chandramouli, W C Schumann, K Ekberg, and S C Kalhan

Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.

Find articles by Landau, B. in: PubMed | Google Scholar

Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.

Find articles by Wahren, J. in: PubMed | Google Scholar

Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.

Find articles by Chandramouli, V. in: PubMed | Google Scholar

Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.

Find articles by Schumann, W. in: PubMed | Google Scholar

Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.

Find articles by Ekberg, K. in: PubMed | Google Scholar

Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.

Find articles by Kalhan, S. in: PubMed | Google Scholar

Published July 15, 1996 - More info

Published in Volume 98, Issue 2 on July 15, 1996
J Clin Invest. 1996;98(2):378–385. https://doi.org/10.1172/JCI118803.
© 1996 The American Society for Clinical Investigation
Published July 15, 1996 - Version history
View PDF
Abstract

Healthy subjects ingested 2H2O and after 14, 22, and 42 h of fasting the enrichments of deuterium in the hydrogens bound to carbons 2, 5, and 6 of blood glucose and in body water were determined. The hydrogens bound to the carbons were isolated in formaldehyde which was converted to hexamethylenetetramine for assay. Enrichment of the deuterium bound to carbon 5 of glucose to that in water or to carbon 2 directly equals the fraction of glucose formed by gluconeogenesis. The contribution of gluconeogenesis to glucose production was 47 +/- 49% after 14 h, 67 +/- 41% after 22 h, and 93 +/- 2% after 42 h of fasting. Glycerol's conversion to glucose is included in estimates using the enrichment at carbon 5, but not carbon 6. Equilibrations with water of the hydrogens bound to carbon 3 of pyruvate that become those bound to carbon 6 of glucose and of the hydrogen at carbon 2 of glucose produced via glycogenolysis are estimated from the enrichments to be approximately 80% complete. Thus, rates of gluconeogenesis can be determined without corrections required in other tracer methodologies. After an overnight fast gluconeogenesis accounts for approximately 50% and after 42 h of fasting for almost all of glucose production in healthy subjects.

Version history
  • Version 1 (July 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 5
  • Article usage
  • Citations to this article (357)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Posted by 3 X users
On 2 Facebook pages
167 readers on Mendeley
See more details