Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Contributions of gluconeogenesis to glucose production in the fasted state.
B R Landau, … , K Ekberg, S C Kalhan
B R Landau, … , K Ekberg, S C Kalhan
Published July 15, 1996
Citation Information: J Clin Invest. 1996;98(2):378-385. https://doi.org/10.1172/JCI118803.
View: Text | PDF
Research Article Article has an altmetric score of 5

Contributions of gluconeogenesis to glucose production in the fasted state.

  • Text
  • PDF
Abstract

Healthy subjects ingested 2H2O and after 14, 22, and 42 h of fasting the enrichments of deuterium in the hydrogens bound to carbons 2, 5, and 6 of blood glucose and in body water were determined. The hydrogens bound to the carbons were isolated in formaldehyde which was converted to hexamethylenetetramine for assay. Enrichment of the deuterium bound to carbon 5 of glucose to that in water or to carbon 2 directly equals the fraction of glucose formed by gluconeogenesis. The contribution of gluconeogenesis to glucose production was 47 +/- 49% after 14 h, 67 +/- 41% after 22 h, and 93 +/- 2% after 42 h of fasting. Glycerol's conversion to glucose is included in estimates using the enrichment at carbon 5, but not carbon 6. Equilibrations with water of the hydrogens bound to carbon 3 of pyruvate that become those bound to carbon 6 of glucose and of the hydrogen at carbon 2 of glucose produced via glycogenolysis are estimated from the enrichments to be approximately 80% complete. Thus, rates of gluconeogenesis can be determined without corrections required in other tracer methodologies. After an overnight fast gluconeogenesis accounts for approximately 50% and after 42 h of fasting for almost all of glucose production in healthy subjects.

Authors

B R Landau, J Wahren, V Chandramouli, W C Schumann, K Ekberg, S C Kalhan

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 766 891
PDF 147 210
Citation downloads 59 0
Totals 972 1,101
Total Views 2,073
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Posted by 3 X users
On 2 Facebook pages
167 readers on Mendeley
See more details