Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
17 readers on Mendeley
1 readers on CiteULike
  • Article usage
  • Citations to this article (554)

Advertisement

Research Article Free access | 10.1172/JCI116911

Glucose-induced protein kinase C activity regulates arachidonic acid release and eicosanoid production by cultured glomerular mesangial cells.

B Williams and R W Schrier

Department of Medicine, University of Colorado Health Sciences Center, Denver 80262.

Find articles by Williams, B. in: PubMed | Google Scholar

Department of Medicine, University of Colorado Health Sciences Center, Denver 80262.

Find articles by Schrier, R. in: PubMed | Google Scholar

Published December 1, 1993 - More info

Published in Volume 92, Issue 6 on December 1, 1993
J Clin Invest. 1993;92(6):2889–2896. https://doi.org/10.1172/JCI116911.
© 1993 The American Society for Clinical Investigation
Published December 1, 1993 - Version history
View PDF
Abstract

Changes in glomerular eicosanoid production have been implicated in the development of diabetes-induced glomerular hyperfiltration and glomerular mesangial cells (GMC) are major eicosanoid-producing cells within the glomerulus. However, the mechanism for the effect of diabetes mellitus on glomerular mesangial eicosanoid production is unknown. The present study therefore examined whether elevated glucose concentrations activate protein kinase C (PKC) in GMC and whether this PKC activation mediates an effect of elevated glucose concentrations to increase the release of arachidonic acid and eicosanoid production by GMC. The percentage of [3H]arachidonic acid release per 30 min by preloaded GMC monolayers was significantly increased after 3-h exposure to high glucose (20 mM) medium (177% vs control medium) and this increase was sustained after 24-h exposure to high glucose concentrations. 3-h and 24-h exposure to high glucose medium also increased PGE2, 6-keto-PGF1 alpha, and thromboxane (TXB2) production by GMC. High glucose medium (20 mM) increased PKC activity in GMC at 3 and 24 h (168% vs control). In contrast, osmotic control media containing either L-glucose or mannitol did not increase arachidonic acid release, eicosanoid production, or PKC activity in GMC. Inhibiting glucose-induced PKC activation with either H-7 (50 microM) or staurosporine (1 microM) prevented glucose-induced increases in arachidonic acid release and eicosanoid production by GMC. These data demonstrate that elevated extracellular glucose concentrations directly increase the release of endogenous arachidonic acid and eicosanoids by GMC via mechanisms dependent on glucose-induced PKC activation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2889
page 2889
icon of scanned page 2890
page 2890
icon of scanned page 2891
page 2891
icon of scanned page 2892
page 2892
icon of scanned page 2893
page 2893
icon of scanned page 2894
page 2894
icon of scanned page 2895
page 2895
icon of scanned page 2896
page 2896
Version history
  • Version 1 (December 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (554)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
17 readers on Mendeley
1 readers on CiteULike
See more details