Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 5 patents
18 readers on Mendeley
  • Article usage
  • Citations to this article (45)

Advertisement

Research Article Free access | 10.1172/JCI116563

Thrombospondin-platelet interactions. Role of divalent cations, wall shear rate, and platelet membrane glycoproteins.

F R Agbanyo, J J Sixma, P G de Groot, L R Languino, and E F Plow

Committee on Vascular Biology, Scripps Research Institute, La Jolla, California 92037.

Find articles by Agbanyo, F. in: PubMed | Google Scholar

Committee on Vascular Biology, Scripps Research Institute, La Jolla, California 92037.

Find articles by Sixma, J. in: PubMed | Google Scholar

Committee on Vascular Biology, Scripps Research Institute, La Jolla, California 92037.

Find articles by de Groot, P. in: PubMed | Google Scholar

Committee on Vascular Biology, Scripps Research Institute, La Jolla, California 92037.

Find articles by Languino, L. in: PubMed | Google Scholar

Committee on Vascular Biology, Scripps Research Institute, La Jolla, California 92037.

Find articles by Plow, E. in: PubMed | Google Scholar

Published July 1, 1993 - More info

Published in Volume 92, Issue 1 on July 1, 1993
J Clin Invest. 1993;92(1):288–296. https://doi.org/10.1172/JCI116563.
© 1993 The American Society for Clinical Investigation
Published July 1, 1993 - Version history
View PDF
Abstract

The role of thrombospondin, a multifunctional matrix glycoprotein, in platelet adhesion is controversial: both adhesive and antiadhesive properties have been attributed to this molecule. Because shear flow has a significant influence on platelet adhesion, we have assessed thrombospondin-platelet interactions both under static and flow conditions. The capacity of thrombospondin to support platelet adhesion depended upon its conformation. In a Ca(2+)-depleted conformation, such as in citrated plasma, thrombospondin was nonadhesive or antiadhesive as it inhibited platelet adhesion to fibrinogen, fibronectin, laminin, and von Willebrand factor by 30-70%. In a Ca(2+)-replete conformation, however, thrombospondin effectively supported platelet adhesion. Shear rate influenced this adhesion; percent surface coverage on thrombospondin increased from 5.4 +/- 0.3 at 0 s-1 to 41.5 +/- 6.7 at 1,600 s-1. In contrast to the extensive platelet spreading observed on fibronectin at all shear rates, platelet spreading on thrombospondin occurred only sporadically and at high shear rates. GPIa-IIa, GPIIb-IIIa, GPIV, and the vitronectin receptor, which are all proposed platelet receptors for thrombospondin, were not solely responsible for platelet adhesion to thrombospondin. These results suggest that thrombospondin may play a dual role in adhesive processes in vivo: (a) it may function in conjunction with other adhesive proteins to maintain optimal platelet adhesion at various shear rates; and (b) it may serve as a modulator of cellular adhesive functions under specific microenvironmental conditions.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 288
page 288
icon of scanned page 289
page 289
icon of scanned page 290
page 290
icon of scanned page 291
page 291
icon of scanned page 292
page 292
icon of scanned page 293
page 293
icon of scanned page 294
page 294
icon of scanned page 295
page 295
icon of scanned page 296
page 296
Version history
  • Version 1 (July 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (45)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 5 patents
18 readers on Mendeley
See more details