Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.
Milena Armacki, Anna Katharina Trugenberger, Ann K. Ellwanger, Tim Eiseler, Christiane Schwerdt, Lucas Bettac, Dominik Langgartner, Ninel Azoitei, Rebecca Halbgebauer, Rüdiger Groß, Tabea Barth, André Lechel, Benjamin M. Walter, Johann M. Kraus, Christoph Wiegreffe, Johannes Grimm, Annika Scheffold, Marlon R. Schneider, Kenneth Peuker, Sebastian Zeißig, Stefan Britsch, Stefan Rose-John, Sabine Vettorazzi, Eckhart Wolf, Andrea Tannapfel, Konrad Steinestel, Stefan O. Reber, Paul Walther, Hans A. Kestler, Peter Radermacher, Thomas F.E. Barth, Markus Huber-Lang, Alexander Kleger, Thomas Seufferlein
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 885 | 160 |
136 | 61 | |
Figure | 553 | 0 |
Supplemental data | 70 | 8 |
Citation downloads | 68 | 0 |
Totals | 1,712 | 229 |
Total Views | 1,941 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.