Tyro3, Axl, Mer (TAM) receptor tyrosine kinases reduce inflammatory, innate immune responses. We demonstrate that tumor-secreted protein S (Pros1), a Mer/Tyro3 ligand, decreased macrophage M1 cytokine expression in vitro and in vivo. In contrast, tumor cells with CRISPR-based deletion of Pros1 failed to inhibit M1 polarization. Tumor cell–associated Pros1 action was abrogated in macrophages from Mer- and Tyro3- but not Axl-KO mice. In addition, several other murine and human tumor cell lines suppressed macrophage M1 cytokine expression induced by IFN-γ and LPS. Investigation of the suppressive pathway demonstrated a role for PTP1b complexing with Mer. Substantiating the role of PTP1b, M1 cytokine suppression was also lost in macrophages from PTP1b-KO mice. Mice bearing Pros1-deficient tumors showed increased innate and adaptive immune infiltration, as well as increased median survival. TAM activation can also inhibit TLR-mediated M1 polarization. Treatment with resiquimod, a TLR7/8 agonist, did not improve survival in mice bearing Pros1-secreting tumors but doubled survival for Pros1-deleted tumors. The tumor-derived Pros1 immune suppressive system, like PD-L1, was cytokine responsive, with IFN-γ inducing Pros1 transcription and secretion. Inhibition of Pros1/TAM interaction represents a potential novel strategy to block tumor-derived immune suppression.
Eric Ubil, Laura Caskey, Alisha Holtzhausen, Debra Hunter, Charlotte Story, H. Shelton Earp
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,202 | 383 |
148 | 97 | |
Figure | 512 | 24 |
Supplemental data | 70 | 12 |
Citation downloads | 64 | 0 |
Totals | 1,996 | 516 |
Total Views | 2,512 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.