Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies
Christopher B. Cole, … , Christopher A. Miller, Timothy J. Ley
Christopher B. Cole, … , Christopher A. Miller, Timothy J. Ley
Published September 5, 2017
Citation Information: J Clin Invest. 2017;127(10):3657-3674. https://doi.org/10.1172/JCI93041.
View: Text | PDF
Research Article Hematology Oncology

Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies

  • Text
  • PDF
Abstract

The gene that encodes de novo DNA methyltransferase 3A (DNMT3A) is frequently mutated in acute myeloid leukemia genomes. Point mutations at position R882 have been shown to cause a dominant negative loss of DNMT3A methylation activity, but 15% of DNMT3A mutations are predicted to produce truncated proteins that could either have dominant negative activities or cause loss of function and haploinsufficiency. Here, we demonstrate that 3 of these mutants produce truncated, inactive proteins that do not dimerize with WT DNMT3A, strongly supporting the haploinsufficiency hypothesis. We therefore evaluated hematopoiesis in mice heterozygous for a constitutive null Dnmt3a mutation. With no other manipulations, Dnmt3a+/– mice developed myeloid skewing over time, and their hematopoietic stem/progenitor cells exhibited a long-term competitive transplantation advantage. Dnmt3a+/– mice also spontaneously developed transplantable myeloid malignancies after a long latent period, and 3 of 12 tumors tested had cooperating mutations in the Ras/MAPK pathway. The residual Dnmt3a allele was neither mutated nor downregulated in these tumors. The bone marrow cells of Dnmt3a+/– mice had a subtle but statistically significant DNA hypomethylation phenotype that was not associated with gene dysregulation. These data demonstrate that haploinsufficiency for Dnmt3a alters hematopoiesis and predisposes mice (and probably humans) to myeloid malignancies by a mechanism that is not yet clear.

Authors

Christopher B. Cole, David A. Russler-Germain, Shamika Ketkar, Angela M. Verdoni, Amanda M. Smith, Celia V. Bangert, Nichole M. Helton, Mindy Guo, Jeffery M. Klco, Shelly O’Laughlin, Catrina Fronick, Robert Fulton, Gue Su Chang, Allegra A. Petti, Christopher A. Miller, Timothy J. Ley

×

Figure 5

Dnmt3a+/– mice develop myeloid malignancies after a long latent period.

Options: View larger image (or click on image) Download as PowerPoint

Dnmt3a+/– mice develop myeloid malignancies after a long latent period....
(A) Kaplan-Meier plot of survival data from littermate-matched Dnmt3a+/– (n = 43) and Dnmt3a+/+ (n = 20) mice that were monitored in a 2-year tumor watch. Mice that became moribund were euthanized for pathologic analysis. (B) After 2 years, all remaining mice were bled for CBCs and euthanized. All mice were grouped by spleen size into Dnmt3a+/+, clinically unaffected Dnmt3a+/–, and affected (moribund) Dnmt3a+/– mice (see Results for details). Affected Dnmt3a+/– mice exhibited anemia and thrombocytopenia, but not significant leukocytosis. *P < 0.05; ***P < 0.001, 1-way ANOVA with Bonferroni’s correction for multiple testing. (C) Distribution of pathologic diagnoses according to Bethesda criteria for all mice that could be definitively classified (n = 16). (D) Representative histology of tissues from affected Dnmt3a+/– mice. Scale bars: 20 μm; 200 μm (low mag).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts