Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A hidden residential cell in the lung
Marc E. Rothenberg
Marc E. Rothenberg
Published August 22, 2016
Citation Information: J Clin Invest. 2016;126(9):3185-3187. https://doi.org/10.1172/JCI89768.
View: Text | PDF
Commentary Article has an altmetric score of 5

A hidden residential cell in the lung

  • Text
  • PDF
Abstract

Eosinophils are classically known as proinflammatory cells, as they are equipped with a variety of preformed cytotoxic mediators and have been shown to definitively contribute to asthma. The connection between eosinophils and asthma development has led to a new class of asthma therapeutics based on blocking eosinophils with humanized antibodies that neutralize IL-5, a potent eosinophil growth, activation, and survival factor. Yet, recent studies have led to an increasing appreciation that eosinophils have a variety of homeostatic functions, including immunomodulation. In this issue of the JCI, Mesnil et al. identify a notable population of lung-resident eosinophils and demonstrate that, compared with traditional eosinophils, these cells have distinct characteristics, including nuclear structure, surface markers, IL-5 independence, and immunoregulatory function that is capable of polarizing adaptive immune responses, at least in vitro. Thus, these results reinforce a key homeostatic role for this enigmatic cell population, particularly in residing and regulating immunity in the lung.

Authors

Marc E. Rothenberg

×

Figure 1

Schematic diagram of the homeostatic roles of eosinophils.

Options: View larger image (or click on image) Download as PowerPoint
Schematic diagram of the homeostatic roles of eosinophils.
Eosinophils t...
Eosinophils transit through the blood stream and home into various tissues at baseline. This schematic focuses on three tissues — adipose, small intestine, and lung. In adipose tissue, eosinophils regulate glucose levels and metabolism via eosinophil-derived IL-4, which regulates macrophage polarization and subsequent generation of insulin-sensitizing agents. In the small intestine, eosinophils regulate secretory IgA, mucus production and microbiota composition. A study in this issue by Mesnil et al. (8) show that in the lung, there is a substantial population of rEos in the parenchyma. These eosinophils have a ringed nucleus and express differential levels of Siglec-F and CD62L compared with inflammatory eosinophils and also express cardinal eosinophil markers including CCR3 and CD123 (the IL-5 receptor). Lung rEos have putative immunosuppressive function. Please note that the data in this figure are mainly derived from murine studies.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 1 patents
On 3 Facebook pages
40 readers on Mendeley
See more details