Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function
Axel R. Concepcion, … , David I. Yule, Stefan Feske
Axel R. Concepcion, … , David I. Yule, Stefan Feske
Published October 10, 2016
Citation Information: J Clin Invest. 2016;126(11):4303-4318. https://doi.org/10.1172/JCI89056.
View: Text | PDF
Research Article Cell biology Dermatology Article has an altmetric score of 2

Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function

  • Text
  • PDF
Abstract

Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release–activated Ca2+ (CRAC) channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE), and patients with these CRAC channel mutations suffer from anhidrosis and hyperthermia at high ambient temperatures. Here we have shown that CRAC channel–deficient patients and mice with ectodermal tissue–specific deletion of Orai1 (Orai1K14Cre) or Stim1 and Stim2 (Stim1/2K14Cre) failed to sweat despite normal sweat gland development. SOCE was absent in agonist-stimulated sweat glands from Orai1K14Cre and Stim1/2K14Cre mice and human sweat gland cells lacking ORAI1 or STIM1 expression. In Orai1K14Cre mice, abolishment of SOCE was associated with impaired chloride secretion by primary murine sweat glands. In human sweat gland cells, SOCE mediated by ORAI1 was necessary for agonist-induced chloride secretion and activation of the Ca2+-activated chloride channel (CaCC) anoctamin 1 (ANO1, also known as TMEM16A). By contrast, expression of TMEM16A, the water channel aquaporin 5 (AQP5), and other regulators of sweat gland function was normal in the absence of SOCE. Our findings demonstrate that Ca2+ influx via store-operated CRAC channels is essential for CaCC activation, chloride secretion, and sweat production in humans and mice.

Authors

Axel R. Concepcion, Martin Vaeth, Larry E. Wagner II, Miriam Eckstein, Lee Hecht, Jun Yang, David Crottes, Maximilian Seidl, Hyosup P. Shin, Carl Weidinger, Scott Cameron, Stuart E. Turvey, Thomas Issekutz, Isabelle Meyts, Rodrigo S. Lacruz, Mario Cuk, David I. Yule, Stefan Feske

×

Figure 1

Sweat glands are present in CRAC channel–deficient patients with EDA-ID.

Options: View larger image (or click on image) Download as PowerPoint
Sweat glands are present in CRAC channel–deficient patients with EDA-ID....
(A) H&E staining of eccrine sweat glands in the dermis of a healthy control donor (HD) and a patient with ORAI1 p.R91W loss-of-function mutation at low magnification. (B) Alcian blue staining of the same biopsies shown in A to detect acid mucopolysaccharides in dark cells (green arrowheads). Arrows indicate different cell types in the secretory portion of sweat glands (CC, clear cells; DC, dark cells; and MC, myoepithelial cells). (C) H&E staining of eccrine sweat glands in the dermis of an HD and patients with ORAI1 p.R91W (magnification of boxed area in A), ORAI1 p.V181SfsX8, and STIM1 p.P165Q mutations that abolish SOCE. Asterisks indicate the lumen of secretory sweat glands. Scale bars in A–C: 50 μm. (D) Quantification of sweat gland lumens from human skin biopsies shown in C. Bars represent the means of 3 HDs and 3 individual patients. Between 2 and 4 coiled nests of eccrine sweat glands were analyzed per skin biopsy. Statistical analyses were performed by 1-way ANOVA using HDs as a reference and multiple comparisons. ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 4 X users
74 readers on Mendeley
See more details