Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Distinct but complementary contributions of PPAR isotypes to energy homeostasis
Vanessa Dubois, … , Philippe Lefebvre, Bart Staels
Vanessa Dubois, … , Philippe Lefebvre, Bart Staels
Published April 3, 2017
Citation Information: J Clin Invest. 2017;127(4):1202-1214. https://doi.org/10.1172/JCI88894.
View: Text | PDF
Review Series Article has an altmetric score of 3

Distinct but complementary contributions of PPAR isotypes to energy homeostasis

  • Text
  • PDF
Abstract

Peroxisome proliferator–activated receptors (PPARs) regulate energy metabolism and hence are therapeutic targets in metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. While they share anti-inflammatory activities, the PPAR isotypes distinguish themselves by differential actions on lipid and glucose homeostasis. In this Review we discuss the complementary and distinct metabolic effects of the PPAR isotypes together with the underlying cellular and molecular mechanisms, as well as the synthetic PPAR ligands that are used in the clinic or under development. We highlight the potential of new PPAR ligands with improved efficacy and safety profiles in the treatment of complex metabolic disorders.

Authors

Vanessa Dubois, Jérôme Eeckhoute, Philippe Lefebvre, Bart Staels

×

Figure 3

PPARβ/δ activation enhances glucose and lipid homeostasis.

Options: View larger image (or click on image) Download as PowerPoint
PPARβ/δ activation enhances glucose and lipid homeostasis.
In SKM, PPARβ...
In SKM, PPARβ/δ activation (effects are indicated in pink) favors fiber type switching toward type I oxidative fibers, which have a higher glucose-handling capacity compared with type II fibers. PPARβ/δ also augments FAO in SKM, liver, and WAT and enhances hepatic glucose metabolism and pancreatic β cell function. PPARβ/δ activation decreases FAs, triglycerides, and LDL-C and increases HDL-C levels in blood. Metabolic effects of PPARβ/δ agonism also take place in brain and gut.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
242 readers on Mendeley
See more details