Cellular identity in metazoan organisms is frequently established through lineage-specifying transcription factors, which control their own expression through transcriptional positive feedback, while antagonizing the developmental networks of competing lineages. Here, we have uncovered a distinct positive feedback loop that arises from the reciprocal stabilization of the tyrosine kinase ABL and the transcriptional coactivator TAZ. Moreover, we determined that this loop is required for osteoblast differentiation and embryonic skeletal formation. ABL potentiated the assembly and activation of the RUNX2-TAZ master transcription factor complex that is required for osteoblastogenesis, while antagonizing PPARγ-mediated adipogenesis. ABL also enhanced TAZ nuclear localization and the formation of the TAZ-TEAD complex that is required for osteoblast expansion. Last, we have provided genetic data showing that regulation of the ABL-TAZ amplification loop lies downstream of the adaptor protein 3BP2, which is mutated in the craniofacial dysmorphia syndrome cherubism. Our study demonstrates an interplay between ABL and TAZ that controls the mesenchymal maturation program toward the osteoblast lineage and is mechanistically distinct from the established model of lineage-specific maturation.
Yoshinori Matsumoto, Jose La Rose, Oliver A. Kent, Melany J. Wagner, Masahiro Narimatsu, Aaron D. Levy, Mitchell H. Omar, Jiefei Tong, Jonathan R. Krieger, Emily Riggs, Yaryna Storozhuk, Julia Pasquale, Manuela Ventura, Behzad Yeganeh, Martin Post, Michael F. Moran, Marc D. Grynpas, Jeffrey L. Wrana, Giulio Superti-Furga, Anthony J. Koleske, Ann Marie Pendergast, Robert Rottapel
TAZ reciprocally stabilizes and activates ABL through the suppression of a ubiquitin-mediated degradation pathway.