Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NLRC4 suppresses melanoma tumor progression independently of inflammasome activation
Ann M. Janowski, … , Suzanne L. Cassel, Fayyaz S. Sutterwala
Ann M. Janowski, … , Suzanne L. Cassel, Fayyaz S. Sutterwala
Published September 12, 2016
Citation Information: J Clin Invest. 2016;126(10):3917-3928. https://doi.org/10.1172/JCI86953.
View: Text | PDF
Research Article Immunology

NLRC4 suppresses melanoma tumor progression independently of inflammasome activation

  • Text
  • PDF
Abstract

Members of the NLR family can assemble inflammasome complexes with the adaptor protein ASC and caspase-1 that result in the activation of caspase-1 and the release of IL-1β and IL-18. Although the NLRC4 inflammasome is known to have a protective role in tumorigenesis, there is an increased appreciation for the inflammasome-independent actions of NLRC4. Here, we utilized a syngeneic subcutaneous murine model of B16F10 melanoma to explore the role of NLRC4 in tumor suppression. We found that NLRC4-deficient mice exhibited enhanced tumor growth that was independent of the inflammasome components ASC and caspase-1. Nlrc4 expression was critical for cytokine and chemokine production in tumor-associated macrophages and was necessary for the generation of protective IFN-γ–producing CD4+ and CD8+ T cells. Tumor progression was diminished when WT or caspase-1–deficient, but not NLRC4-deficient, macrophages were coinjected with B16F10 tumor cells in NLRC4-deficient mice. Finally, examination of human primary melanomas revealed the extensive presence of NLRC4+ tumor-associated macrophages. In contrast, there was a paucity of NLRC4+ tumor-associated macrophages observed in human metastatic melanoma, supporting the concept that NLRC4 expression controls tumor growth. These results reveal a critical role for NLRC4 in suppressing tumor growth in an inflammasome-independent manner.

Authors

Ann M. Janowski, Oscar R. Colegio, Emma E. Hornick, Jennifer M. McNiff, Matthew D. Martin, Vladimir P. Badovinac, Lyse A. Norian, Weizhou Zhang, Suzanne L. Cassel, Fayyaz S. Sutterwala

×

Figure 6

NLRC4 regulates STAT3 and p38 MAPK signaling in the tumor microenvironment.

Options: View larger image (or click on image) Download as PowerPoint
NLRC4 regulates STAT3 and p38 MAPK signaling in the tumor microenvironme...
(A and B) B16F10 tumors from WT and Nlrc4–/– mice at day 14 after inoculation were homogenized and immunoblotted for phospho-STAT3 and STAT3 (A), phospho-p38 MAPK and p38 MAPK (B), and GAPDH (A and B). Each lane represents a tumor from an individual mouse. (A and B) Densitometry of the ratio of phosphorylated to total protein is shown. (C) WT and Nlrc4–/– BMDMs were challenged for 4, 5, 6, 7, and 8 hours with 50 ng/ml LPS. Cell lysates were immunoblotted with antibodies against phospho-STAT3, STAT3, and GAPDH. (D) WT and Nlrc4–/– BMDMs were challenged for 15, 30, 60, and 90 minutes with 50 ng/ml LPS. Cell lysates were immunoblotted with antibodies against phospho-p38 MAPK, p38 MAPK, and GAPDH. (E) WT and Nlrc4–/– BMDMs were challenged for 5, 10, 15, 30, and 60 minutes with 10 ng/ml recombinant IL-6. Cell lysates were immunoblotted with antibodies against phospho-STAT3, STAT3, and GAPDH. (C–E) Data are representative of 3 independent experiments. (A and B) *P ≤ 0.05, unpaired 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts