Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis
Silvia Martin-Almedina, … , Taija Makinen, Pia Ostergaard
Silvia Martin-Almedina, … , Taija Makinen, Pia Ostergaard
Published July 11, 2016
Citation Information: J Clin Invest. 2016;126(8):3080-3088. https://doi.org/10.1172/JCI85794.
View: Text | PDF
Research Article Genetics Article has an altmetric score of 15

EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis

  • Text
  • PDF
Abstract

Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.

Authors

Silvia Martin-Almedina, Ines Martinez-Corral, Rita Holdhus, Andres Vicente, Elisavet Fotiou, Shin Lin, Kjell Petersen, Michael A. Simpson, Alexander Hoischen, Christian Gilissen, Heather Jeffery, Giles Atton, Christina Karapouliou, Glen Brice, Kristiana Gordon, John W. Wiseman, Marianne Wedin, Stanley G. Rockson, Steve Jeffery, Peter S. Mortimer, Michael P. Snyder, Siren Berland, Sahar Mansour, Taija Makinen, Pia Ostergaard

×

Figure 2

Imaging of the lymphatic system in LRHF.

Options: View larger image (or click on image) Download as PowerPoint
Imaging of the lymphatic system in LRHF.
Anterior view of lower limb lym...
Anterior view of lower limb lymphoscintigraphy 2 hours after injection with radionuclide. (A) GLDUK:I.2, rerouting through skin and superficial tissues in the right leg and markedly reduced transport in the left leg. (B) GLDUK:II.4, normal uptake of tracer in the lymph nodes in the groin area, but with some rerouting in the calves (seen as the dark shading; arrows). (C) Unaffected subject with symmetrical transport of radionuclide within collecting lymph vessels in the leg.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Posted by 2 X users
Referenced in 3 patents
On 1 Facebook pages
54 readers on Mendeley
See more details