Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model
Oh-Joon Kwon, … , Michael M. Ittmann, Li Xin
Oh-Joon Kwon, … , Michael M. Ittmann, Li Xin
Published June 13, 2016
Citation Information: J Clin Invest. 2016;126(7):2626-2641. https://doi.org/10.1172/JCI84637.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 28

Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model

  • Text
  • PDF
Abstract

Although Notch signaling is deregulated in prostate cancer, the role of this pathway in disease development and progression is not fully understood. Here, we analyzed 2 human prostate cancer data sets and found that higher Notch signaling correlates with increased metastatic potential and worse disease survival rates. We used the Pten-null mouse prostate cancer model to investigate the function of Notch signaling in the initiation and progression of prostate cancer. Disruption of the transcription factor RBPJ in Pten-null mice revealed that endogenous canonical Notch signaling is not required for disease initiation and progression. However, augmentation of Notch activity in this model promoted both proliferation and apoptosis of prostate epithelial cells, which collectively reduced the primary tumor burden. The increase in cellular apoptosis was linked to DNA damage–induced p53 activation. Despite a reduced primary tumor burden, Notch activation in Pten-null mice promoted epithelial-mesenchymal transition and FOXC2-dependent tumor metastases but did not confer resistance to androgen deprivation. Notch activation also resulted in transformation of seminal vesicle epithelial cells in Pten-null mice. Our study highlights a multifaceted role for Notch signaling in distinct aspects of prostate cancer biology and supports Notch as a potential therapeutic target for metastatic prostate cancer.

Authors

Oh-Joon Kwon, Li Zhang, Jianghua Wang, Qingtai Su, Qin Feng, Xiang H.F. Zhang, Sendurai A. Mani, Robia Paulter, Chad J. Creighton, Michael M. Ittmann, Li Xin

×

Figure 5

Notch activation promotes both proliferation and apoptosis of Pten-null prostate cancer cells.

Options: View larger image (or click on image) Download as PowerPoint
Notch activation promotes both proliferation and apoptosis of Pten-null ...
(A and B) Coimmunostaining of Ki-67 and K8 (A) and cleaved caspase 3 (CC3) and K8 (B) in 16-week-old PB-Pten and PB-Pten-NICD mouse prostates. Bar graphs show means ± SD of Ki-67+ and CC3+ cells in 3 mice per group. ***P < 0.001 by Student’s t test. (C) Coimmunostaining of pH2AX and K8 in 16-week-old PB-Pten and PB-Pten-NICD mouse prostates. (D) Western blot analysis of pSer15 p53 and total p53 in prostate tissue lysates from 16-week-old PB-Pten and PB-Pten-NICD mice. (E) qRT-PCR analysis of 3 p53 target genes in prostate tissues of 16-week-old PB-Pten and PB-Pten-NICD mice. n = 3 per group. *P < 0.05, **P < 0.01, ***P < 0.001 by Student’s t test. Scale bars: 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 4 news outlets
54 readers on Mendeley
See more details