Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor–null mice
Catherine Léon, … , Jean-Pierre Cazenave, Christian Gachet
Catherine Léon, … , Jean-Pierre Cazenave, Christian Gachet
Published December 15, 1999
Citation Information: J Clin Invest. 1999;104(12):1731-1737. https://doi.org/10.1172/JCI8399.
View: Text | PDF
Article Article has an altmetric score of 3

Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor–null mice

  • Text
  • PDF
Abstract

ADP is a key agonist in hemostasis and thrombosis. ADP-induced platelet activation involves the purinergic P2Y1 receptor, which is responsible for shape change through intracellular calcium mobilization. This process also depends on an unidentified P2 receptor (P2cyc) that leads to adenylyl cyclase inhibition and promotes the completion and amplification of the platelet response. P2Y1-null mice were generated to define the role of the P2Y1 receptor and to determine whether the unidentified P2cyc receptor is distinct from P2Y1. These mice are viable with no apparent abnormalities affecting their development, survival, reproduction, or the morphology of their platelets, and the platelet count in these animals is identical to that of wild-type mice. However, platelets from P2Y1-deficient mice are unable to aggregate in response to usual concentrations of ADP and display impaired aggregation to other agonists, while high concentrations of ADP induce platelet aggregation without shape change. In addition, ADP-induced inhibition of adenylyl cyclase still occurs, demonstrating the existence of an ADP receptor distinct from P2Y1. P2Y1-null mice have no spontaneous bleeding tendency but are resistant to thromboembolism induced by intravenous injection of ADP or collagen and adrenaline. Hence, the P2Y1 receptor plays an essential role in thrombotic states and represents a potential target for antithrombotic drugs.

Authors

Catherine Léon, Béatrice Hechler, Monique Freund, Anita Eckly, Catherine Vial, Philippe Ohlmann, Andrée Dierich, Marianne LeMeur, Jean-Pierre Cazenave, Christian Gachet

×

Full Text PDF

Download PDF (255.59 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
122 readers on Mendeley
See more details