Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3–encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the
Davide Komla-Ebri, Emilie Dambroise, Ina Kramer, Catherine Benoist-Lasselin, Nabil Kaci, Cindy Le Gall, Ludovic Martin, Patricia Busca, Florent Barbault, Diana Graus-Porta, Arnold Munnich, Michaela Kneissel, Federico Di Rocco, Martin Biosse-Duplan, Laurence Legeai-Mallet
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,105 | 338 |
154 | 116 | |
Figure | 512 | 19 |
Table | 149 | 0 |
Supplemental data | 96 | 22 |
Citation downloads | 75 | 0 |
Totals | 2,091 | 495 |
Total Views | 2,586 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.