Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction
Michio Nakaya, … , Shigekazu Nagata, Hitoshi Kurose
Michio Nakaya, … , Shigekazu Nagata, Hitoshi Kurose
Published December 5, 2016
Citation Information: J Clin Invest. 2017;127(1):383-401. https://doi.org/10.1172/JCI83822.
View: Text | PDF
Research Article Cardiology Inflammation Article has an altmetric score of 9

Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction

  • Text
  • PDF
Abstract

Myocardial infarction (MI) results in the generation of dead cells in the infarcted area. These cells are swiftly removed by phagocytes to minimize inflammation and limit expansion of the damaged area. However, the types of cells and molecules responsible for the engulfment of dead cells in the infarcted area remain largely unknown. In this study, we demonstrated that cardiac myofibroblasts, which execute tissue fibrosis by producing extracellular matrix proteins, efficiently engulf dead cells. Furthermore, we identified a population of cardiac myofibroblasts that appears in the heart after MI in humans and mice. We found that these cardiac myofibroblasts secrete milk fat globule-epidermal growth factor 8 (MFG-E8), which promotes apoptotic engulfment, and determined that serum response factor is important for MFG-E8 production in myofibroblasts. Following MFG-E8–mediated engulfment of apoptotic cells, myofibroblasts acquired antiinflammatory properties. MFG-E8 deficiency in mice led to the accumulation of unengulfed dead cells after MI, resulting in exacerbated inflammatory responses and a substantial decrease in survival. Moreover, MFG-E8 administration into infarcted hearts restored cardiac function and morphology. MFG-E8–producing myofibroblasts mainly originated from resident cardiac fibroblasts and cells that underwent endothelial-mesenchymal transition in the heart. Together, our results reveal previously unrecognized roles of myofibroblasts in regulating apoptotic engulfment and a fundamental importance of these cells in recovery from MI.

Authors

Michio Nakaya, Kenji Watari, Mitsuru Tajima, Takeo Nakaya, Shoichi Matsuda, Hiroki Ohara, Hiroaki Nishihara, Hiroshi Yamaguchi, Akiko Hashimoto, Mitsuho Nishida, Akiomi Nagasaka, Yuma Horii, Hiroki Ono, Gentaro Iribe, Ryuji Inoue, Makoto Tsuda, Kazuhide Inoue, Akira Tanaka, Masahiko Kuroda, Shigekazu Nagata, Hitoshi Kurose

×

Figure 2

Cardiac myofibroblasts engulf dead cells in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Cardiac myofibroblasts engulf dead cells in vivo.
(A) Representative LV ...
(A) Representative LV sections from WT mice that underwent MI were double stained with TUNEL (green) and anti-αSMA antibody (red) (n = 4). The area indicated by a white square on the merged image is enlarged. Kymograph along the white dashed line in the enlarged image is shown. The area indicated by a white square on the enlarged image was further enlarged, and a 3D image in a white square on the enlarged image is shown. White arrows indicate myofibroblasts containing an apoptotic cell. Scale bars: 30 μm. (B) Transmission electron micrographs of engulfment of an apoptotic cell by a myofibroblast. The areas in yellow and red boxes within a myofibroblast (orange dotted line) are enlarged in the middle and right panels. Well-developed rough-surfaced endoplasmic reticulum and intracellular actin filaments (arrowheads) can be seen in the myofibroblast. MN, myofibroblast nucleus; AN apoptotic nucleus; rER, rough-surfaced endoplasmic reticulum; Mt, mitochondria. Scale bar: 1 μm. (C) Quantification of engulfed TUNEL+ apoptotic cells by macrophages (CD68+) or myofibroblasts (αSMA+) on the sections from mouse hearts 3 days after MI (n = 4). The number of engulfed apoptotic cells per square millimeter of CD68+ macrophage or αSMA+ myofibroblast area is shown. Scale bars: 50 μm. (D) Representative infarcted LV sections from WT mice with EGFP-labeled cardiomyocytes were stained with anti-αSMA antibody (red) (n = 4). Scale bars: 30 μm. (E) Transmission electron micrographs of engulfment of a necrotic cell by a myofibroblast. The areas in black and red dotted boxes are enlarged in middle and right panels. Necrotic nucleus (NN) was observed in the myofibroblast. Arrowheads indicate single-membrane structure. Scale bar: 1 μm. Error bars represent the mean ± SEM. (C) **P < 0.01, unpaired 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 16 X users
On 1 Facebook pages
Highlighted by 1 platforms
154 readers on Mendeley
See more details