Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.
Hsin-Wei Liao, Jung-Mao Hsu, Weiya Xia, Hung-Ling Wang, Ying-Nai Wang, Wei-Chao Chang, Stefan T. Arold, Chao-Kai Chou, Pei-Hsiang Tsou, Hirohito Yamaguchi, Yueh-Fu Fang, Hong-Jen Lee, Heng-Huan Lee, Shyh-Kuan Tai, Mhu-Hwa Yang, Maria P. Morelli, Malabika Sen, John E. Ladbury, Chung-Hsuan Chen, Jennifer R. Grandis, Scott Kopetz, Mien-Chie Hung
This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.
PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.
Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.