Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis
Sajedah M. Hindi, Ashok Kumar
Sajedah M. Hindi, Ashok Kumar
Published November 30, 2015
Citation Information: J Clin Invest. 2016;126(1):151-168. https://doi.org/10.1172/JCI81655.
View: Text | PDF
Research Article Muscle biology Article has an altmetric score of 82

TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis

  • Text
  • PDF
Abstract

Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regeneration in normal and diseased muscle. TNF receptor–associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase that mediates the activation of multiple cell signaling pathways in a context-dependent manner. Here, we demonstrated that TRAF6-mediated signaling is critical for homeostasis of satellite cells and their function during regenerative myogenesis. Selective deletion of Traf6 in satellite cells of adult mice led to profound muscle regeneration defects and dramatically reduced levels of PAX7 and late myogenesis markers. TRAF6 was required for the activation of MAPKs ERK1/2 and JNK1/2, which in turn activated the transcription factor c-JUN, which binds the Pax7 promoter and augments Pax7 expression. Moreover, TRAF6/c-JUN signaling repressed the levels of the microRNAs miR-1 and miR-206, which promote differentiation, to maintain PAX7 levels in satellite cells. We also determined that satellite cell–specific deletion of Traf6 exaggerates the dystrophic phenotype in the mdx (a mouse model of Duchenne muscular dystrophy) mouse by blunting the regeneration of injured myofibers. Collectively, our study reveals an essential role for TRAF6 in satellite stem cell function.

Authors

Sajedah M. Hindi, Ashok Kumar

×

Figure 7

Role of MAPK signaling in gene expression of PAX7 in satellite cells.

Options: View larger image (or click on image) Download as PowerPoint
Role of MAPK signaling in gene expression of PAX7 in satellite cells.
Pr...
Primary myoblasts prepared from WT mice were treated with vehicle alone, 2 μM PD184352, 20 μM SP600125, or 20 μM SB230580 for 4h. (A) Relative mRNA levels of Pax7 mRNA. (B) Representative immunoblots from 2 independent experiments demonstrate the levels of PAX7 and phosphorylated and total c-JUN protein. (C) Densitometry quantification of PAX7 and phosphorylated and total c-JUN protein after treatment with various inhibitors. n = 4 in each group. (D) Relative mRNA levels of Pax7 and Jun after 72h of transfection of myoblasts with scrambled or c-JUN shRNA construct. (E) Relative mRNA levels of Pax7 and Jun in primary myoblasts after 72h of transfection with vector alone or c-JUN cDNA. (F) Relative mRNA levels of Pax7 in Traf6–/– cultures upon transfection with c-JUN cDNA. n = 4 in each group. (G) Primary myoblasts were processed for ChIP assay for the binding of c-JUN at its putative consensus DNA sequence in Pax7 promoter. Agarose gel images of semi-quantitative RT-PCR demonstrate enrichment of Jun at indicated c-JUN/AP1 sites in mouse Pax7 promoter. The numbers indicate the position of consensus sequence upstream of first ATG in exon 1 of the Pax7 gene. (H) ChIP assay followed by qPCR analysis depicting percentage of input enrichment of c-JUN at specific sites in Pax7 promoter in Traf6+/+ and Traf6–/– cultures. n = 4 in each group. Error bars represent SD from mean. *P < 0.05 (vs. cultures treated with vehicle alone) by paired t test. §P < 0.05 (vs. corresponding cultures transfected with scrambled shRNA or vector alone) by unpaired t test. #P < 0.05 (vs. Traf6+/+ cultures transfected with vector alone) by paired t test. ‡P < 0.05 (vs. Traf6–/– cells transfected with vector alone) by paired t test. †P < 0.05 (vs. Traf6–/– cultures) by unpaired t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 11 news outlets
Blogged by 1
Posted by 6 X users
73 readers on Mendeley
See more details