Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Transcriptional regulation of autophagy in RAS-driven cancers
Ravi K. Amaravadi
Ravi K. Amaravadi
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1393-1395. https://doi.org/10.1172/JCI81504.
View: Text | PDF
Commentary

Transcriptional regulation of autophagy in RAS-driven cancers

  • Text
  • PDF
Abstract

RAS-driven cancers exhibit variable dependency on autophagy for survival; however, it is not fully understood how. In this issue of the JCI, Cheong and colleagues demonstrate that RAS-dependent elevation of casein kinase 1α (CK1α) negatively regulates autophagy at the level of autophagy gene transcription. Moreover, combined inhibition of both CK1α and autophagy reduced proliferation of RAS-driven tumors. The results of this study provide insight into the connection between mutant RAS and autophagy, and suggest targeting CK1α as a potential therapeutic strategy to modulate autophagy in RAS-driven cancers.

Authors

Ravi K. Amaravadi

×

Figure 1

Transcriptional regulation of autophagy in RAS-driven cancers.

Options: View larger image (or click on image) Download as PowerPoint
Transcriptional regulation of autophagy in RAS-driven cancers.
Mutant RA...
Mutant RAS activates several canonical growth factor signaling pathways, including the MAPK pathway (RAF/MEK/ERK) and the PI3K pathway (PI3K/AKT/mTOR). MAPK and PI3K signaling events take place in part on the surface of autophagic vesicles and lysosomes, respectively. Autophagy consists of the sequestration of damaged organelles within autophagic vesicles followed by fusion with the lysosome. A subset of known transcriptional regulators of autophagy genes are depicted, along with their regulation by growth factor kinase signaling pathways under the control of RAS. In this issue, Cheong et al. demonstrate that RAS-driven PI3K signaling increases levels of CK1α, which in turn phosphorylates and inhibits nuclear localization of FOXO3A, a transcription factor that positively regulates the expression of key autophagy genes (this pathway is denoted in yellow). Dashed lines indicate pathways described in other reports. Arrows indicate activation; lines ending in T indicate inhibition. UPR, unfolded protein response; TF, transcription factor.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts