Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Involvement of nitric oxide system in experimental muscle crush injury.
I Rubinstein, … , J Winaver, O S Better
I Rubinstein, … , J Winaver, O S Better
Published March 15, 1998
Citation Information: J Clin Invest. 1998;101(6):1325-1333. https://doi.org/10.1172/JCI810.
View: Text | PDF
Research Article

Involvement of nitric oxide system in experimental muscle crush injury.

  • Text
  • PDF
Abstract

Muscle crush injury is often complicated by hemodynamic shock, electrolyte disorders, and myoglobinuric renal failure. In this study, we examined the involvement of the nitric oxide (NO) system in the development of muscle damage in an experimental model of crush injury induced by exertion of standardized mechanical pressure on tibialis muscle of rat. The intact limb served as a control. Four days after injury, the crushed muscle was characterized by extreme capillary vasodilatation as demonstrated by histological morphometric analysis. These changes were accompanied by muscle hyperperfusion as evaluated by measurements of femoral blood flow (ultrasonic flowmetry) and capillary blood flow (laser-doppler flowmetry). Treatment with Nomega-nitro-L-arginine methyl ester, a NO synthase (NOS) inhibitor, largely decreased the hyperperfusion. Furthermore, the expression of the different NOS isoforms, assessed by reverse transcription-PCR and immunoreactive levels, determined by Western blot, revealed a remarkable induction of the inducible NOS in the crushed limb. Similarly, endothelial NOS mRNA increased gradually after the induction of muscle damage. In contrast, the major muscular NOS, i.e., neuronal isoform remained unchanged. In line with the alterations in the mRNA levels, Western blot analysis revealed parallel changes in the immunoreactive levels of the various NOS. These findings indicate that muscle crush is associated with activation of the NO system mainly due to enhancement of iNOS. This may contribute to NO-dependent extreme vasodilatation in the injured muscle and aggravate the hypovolemic shock after crush injury.

Authors

I Rubinstein, Z Abassi, R Coleman, F Milman, J Winaver, O S Better

×

Full Text PDF

Download PDF (516.00 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts