Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Immunity, inflammation, and cancer: an eternal fight between good and evil
Shabnam Shalapour, Michael Karin
Shabnam Shalapour, Michael Karin
Published September 1, 2015
Citation Information: J Clin Invest. 2015;125(9):3347-3355. https://doi.org/10.1172/JCI80007.
View: Text | PDF
Review Series Article has an altmetric score of 5

Immunity, inflammation, and cancer: an eternal fight between good and evil

  • Text
  • PDF
Abstract

Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches.

Authors

Shabnam Shalapour, Michael Karin

×

Figure 1

Inflammation promotes tumor development.

Options: View larger image (or click on image) Download as PowerPoint
Inflammation promotes tumor development.
(A) Microbial products that pen...
(A) Microbial products that penetrate through the defective barrier associated with early tumors or DAMPs released by dying cancer cells (CACs) activate myeloid cells that are recruited into the tumor due to production of chemokines by CACs. (B) TAMs and TANs express cytokines, such as IL-1, IL-6, and TNF, which act directly on CACs, leading to activation of NF-κB, STAT3, YAP, and Notch. The cytokines thereby promote CAC survival and proliferation. (C) The growing tumor secretes lactate and acquires a hypoxic core due to insufficient O2 supply. The hypoxia results in CAF activation due to HIF-1–induced TGF-β production and may convert TAM1 cells to a TAM2 phenotype, which produces VEGF to support neo-angiogenesis. (D) CAFs, which express TGF-β and CXCL13, recruit lymphotoxin-producing B2 cells that support further tumor growth. (E) Chemokines expressed in the inflamed tumor bed recruit tumor-promoting Th17 cells and immunosuppressive Tregs and MDSCs. (F) Tumor-infiltrating B cells undergo class-switch recombination (CSR) and become ISPCs that induce an exhausted/angergic-like phenotype in cytotoxic T cells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 2 X users
Referenced in 8 patents
568 readers on Mendeley
See more details