Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma
Emily Z. Keung, Kadir C. Akdemir, Ghadah A. Al Sannaa, Jeannine Garnett, Dina Lev, Keila E. Torres, Alexander J. Lazar, Kunal Rai, Lynda Chin
Emily Z. Keung, Kadir C. Akdemir, Ghadah A. Al Sannaa, Jeannine Garnett, Dina Lev, Keila E. Torres, Alexander J. Lazar, Kunal Rai, Lynda Chin
View: Text | PDF
Research Article Oncology

Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma

  • Text
  • PDF
Abstract

Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS.

Authors

Emily Z. Keung, Kadir C. Akdemir, Ghadah A. Al Sannaa, Jeannine Garnett, Dina Lev, Keila E. Torres, Alexander J. Lazar, Kunal Rai, Lynda Chin

×

Figure 4

KLF6 is underexpressed in human DDLPS tumors compared with WDLPS tumors.

Options: View larger image (or click on image) Download as PowerPoint
KLF6 is underexpressed in human DDLPS tumors compared with WDLPS tumors....
(A) KLF6 expression levels in human DDLPS tumors (n = 17) compared with those detected in WDLPS tumors (n = 13) and normal fat (n = 6), as assessed by qRT-PCR normalized to GAPDH (mean ± SD; n = 3). Data were analyzed by Mann-Whitney U and Kruskal-Wallis tests. (B) KLF6 protein expression in human DDLPS tumors (n = 19) compared with levels detected in normal fat (n = 8) and WDLPS tumors (n = 14), as assessed by Western blot analysis. (C) Relative KLF6 copy numbers of WDLPS (n = 3) and DDLPS (n = 4) cell lines, as assessed by TaqMan CNV assay (RNaseP reference) (mean ± SD; n = 3). Data were analyzed by the Mann-Whitney U test. (D) Relative KLF6 copy numbers of WDLPS (n = 15) and DDLPS (n = 19) tumors, as assessed by TaqMan CNV assay (RNaseP reference) (mean ± SD; n = 3). Data were analyzed by Mann-Whitney U and Kruskal-Wallis tests. Mean KLF6 copy number: normal fat specimens, 1.99 (95% CI 1.60–2.37), DDLPS tumors, 2.04 (95% CI 1.84–2.24), and WDLPS tumors, 2.46 (95% CI 2.17–2.75). Data are representative of 2 experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts