Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CRK proteins selectively regulate T cell migration into inflamed tissues
Yanping Huang, … , Taku Kambayashi, Janis K. Burkhardt
Yanping Huang, … , Taku Kambayashi, Janis K. Burkhardt
Published January 26, 2015
Citation Information: J Clin Invest. 2015;125(3):1019-1032. https://doi.org/10.1172/JCI77278.
View: Text | PDF
Research Article Immunology

CRK proteins selectively regulate T cell migration into inflamed tissues

  • Text
  • PDF
Abstract

Effector T cell migration into inflamed sites greatly exacerbates tissue destruction and disease severity in inflammatory diseases, including graft-versus-host disease (GVHD). T cell migration into such sites depends heavily on regulated adhesion and migration, but the signaling pathways that coordinate these functions downstream of chemokine receptors are largely unknown. Using conditional knockout mice, we found that T cells lacking the adaptor proteins CRK and CRK-like (CRKL) exhibit reduced integrin-dependent adhesion, chemotaxis, and diapedesis. Moreover, these two closely related proteins exhibited substantial functional redundancy, as ectopic expression of either protein rescued defects in T cells lacking both CRK and CRKL. We determined that CRK proteins coordinate with the RAP guanine nucleotide exchange factor C3G and the adhesion docking molecule CASL to activate the integrin regulatory GTPase RAP1. CRK proteins were required for effector T cell trafficking into sites of inflammation, but not for migration to lymphoid organs. In a murine bone marrow transplantation model, the differential migration of CRK/CRKL-deficient T cells resulted in efficient graft-versus-leukemia responses with minimal GVHD. Together, the results from our studies show that CRK family proteins selectively regulate T cell adhesion and migration at effector sites and suggest that these proteins have potential as therapeutic targets for preventing GVHD.

Authors

Yanping Huang, Fiona Clarke, Mobin Karimi, Nathan H. Roy, Edward K. Williamson, Mariko Okumura, Kazuhiro Mochizuki, Emily J.H. Chen, Tae-Ju Park, Gudrun F. Debes, Yi Zhang, Tom Curran, Taku Kambayashi, Janis K. Burkhardt

×

Figure 8

CRK/CRKL Dko donor T cells can carry out GVL with minimal GVHD.

Options: View larger image (or click on image) Download as PowerPoint
CRK/CRKL Dko donor T cells can carry out GVL with minimal GVHD.
(A–C) T ...
(A–C) T cell–depleted bone marrow cells alone (BM, H-2b), mixed with purified WT CD4+ T cells (BM + WT CD4 T cells, H-2b), or mixed with purified CRK/CRKL Dko CD4+ T cells (BM + Dko CD4 T cells, H-2b) were injected into lethally irradiated BALB/c hosts (H-2d). Host GVHD clinical scores (A), body weight change (B), and survival (C) are summarized. Combined data from 2 different experiments are shown, with a total of 5–10 mice for each experimental group. (D–G) Lethally irradiated BALB/c hosts were injected with T cell–depleted bone marrow cells alone (BM control), or together with luciferase-transduced A20 cells (BM + A20luc), purified WT CD8+ T cells (BM + A20luc + WT CD8 T), or CRK/CRKL Dko CD8+ T cells (BM + A20luc + Dko CD8 T). Host body weight change (D), survival (E), and tumor burden (reflected by the luciferase signal) (F and G) are summarized. E shows combined data from 2 different experiments, with a total of 8–10 mice per experimental group. D and F show data from 1 of 2 independent experiments, with 5 mice for each experimental group. (H) To assess T cell migration during GVHD, congenically marked CD8+ T cells from WT or CRK/CRKL Dko mice were mixed 1:1 with competitor SJL T cells (all H-2b) and injected together with T cell–depleted bone marrow cells into lethally irradiated BALB/c host mice (H-2d). Spleen and liver were harvested after 10–12 days, and the ratio of experimental (WT or Dko) to competitor adoptively transferred cells was determined. Paired data (combined from 2 experiments) are shown, with a total of 5 (WT) or 6 (Dko) recipient mice. Error bars represent mean ± SD. Statistical analysis in C, E, and H was performed using a 1-way ANOVA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts