Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients
Jennifer E. Adair, … , Kristin R. Swanson, Hans-Peter Kiem
Jennifer E. Adair, … , Kristin R. Swanson, Hans-Peter Kiem
Published September 2, 2014; First published August 8, 2014
Citation Information: J Clin Invest. 2014;124(9):4082-4092. https://doi.org/10.1172/JCI76739.
View: Text | PDF
Categories: Clinical Medicine Clinical trials

Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients

  • Text
  • PDF
Abstract

BACKGROUND. Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMThi). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome.

METHODS. We enrolled 7 newly diagnosed glioblastoma patients with MGMThi tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated.

RESULTS. Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5–57+) months and OS of 20 (range 13–57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG.

CONCLUSION. These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT.

TRIAL REGISTRATION. Clinicaltrials.gov NCT00669669.

FUNDING. R01CA114218, R01AI080326, R01HL098489, P30DK056465, K01DK076973, R01HL074162, R01CA164371, R01NS060752, U54CA143970.

Authors

Jennifer E. Adair, Sandra K. Johnston, Maciej M. Mrugala, Brian C. Beard, Laura A. Guyman, Anne L. Baldock, Carly A. Bridge, Andrea Hawkins-Daarud, Jennifer L. Gori, Donald E. Born, Luis F. Gonzalez-Cuyar, Daniel L. Silbergeld, Russell C. Rockne, Barry E. Storer, Jason K. Rockhill, Kristin R. Swanson, Hans-Peter Kiem

×

Full Text PDF | Download (1.76 MB)

Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts