Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Twisting mice move the dystonia field forward
Åsa Petersén, Deniz Kirik
Åsa Petersén, Deniz Kirik
Published June 17, 2014
Citation Information: J Clin Invest. 2014;124(7):2848-2850. https://doi.org/10.1172/JCI76624.
View: Text | PDF
Commentary

Twisting mice move the dystonia field forward

  • Text
  • PDF
Abstract

A common form of the hyperkinetic movement disorder dystonia is caused by mutations in the gene TOR1A (located within the DYT1 locus), which encodes the ATPase torsinA. The underlying neurobiological mechanisms that result in dystonia are poorly understood, and progress in the field has been hampered by the absence of a dystonia-like phenotype in animal models with genetic modification of Tor1a. In this issue of the JCI, Liang et al. establish the first animal model with a dystonic motor phenotype and link torsinA hypofunction to the development of early neuropathological changes in distinct sensorimotor regions. The findings of this study will likely play an important role in elucidating the neural substrate for dystonia and should stimulate systematic neuropathological and imaging studies in carriers of TOR1A mutations.

Authors

Åsa Petersén, Deniz Kirik

×

Full Text PDF

Download PDF (177.57 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts