In this study we have examined the mechanism of platelet aggregation under physiological flow conditions using an in vitro flow-based platelet aggregation assay and an in vivo rat thrombosis model. Our studies demonstrate an unexpected complexity to the platelet aggregation process in which platelets in flowing blood continuously tether, translocate, and/or detach from the luminal surface of a growing platelet thrombus at both arterial and venous shear rates. Studies of platelets congenitally deficient in von Willebrand factor (vWf) or integrin αIIbβ3 demonstrated a key role for platelet vWf in mediating platelet tethering and translocation, whereas integrin αIIbβ3 mediated cell arrest. Platelet aggregation under flow appears to be a multistep process involving: (a) exposure of vWf on the surface of immobilized platelets; (b) a reversible phase of platelet aggregation mediated by the binding of GPIbα on the surface of free-flowing platelets to vWf on the surface of immobilized platelets; and (c) an irreversible phase of aggregation dependent on integrin αIIbβ3. Studies of platelet thrombus formation in vivo demonstrate that this multistep adhesion mechanism is indispensable for platelet aggregation in arterioles and also appears to promote platelet aggregate formation in venules. Together, our studies demonstrate an important role for platelet vWf in initiating the platelet aggregation process under flow and challenge the currently accepted view that the vWf-GPIbα interaction is exclusively involved in initiating platelet aggregation at elevated shear rates.
Suhasini Kulkarni, Sacha M. Dopheide, Cindy L. Yap, Catherine Ravanat, Monique Freund, Pierre Mangin, Kathryn A. Heel, Alison Street, Ian S. Harper, Francois Lanza, Shaun P. Jackson
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,684 | 154 |
160 | 36 | |
Figure | 329 | 8 |
Supplemental data | 33 | 1 |
Citation downloads | 48 | 0 |
Totals | 2,254 | 199 |
Total Views | 2,453 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.