Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The Schlemm’s canal is a VEGF-C/VEGFR-3–responsive lymphatic-like vessel
Aleksanteri Aspelund, … , Ilkka Immonen, Kari Alitalo
Aleksanteri Aspelund, … , Ilkka Immonen, Kari Alitalo
Published July 25, 2014
Citation Information: J Clin Invest. 2014;124(9):3975-3986. https://doi.org/10.1172/JCI75395.
View: Text | PDF
Research Article Article has an altmetric score of 21

The Schlemm’s canal is a VEGF-C/VEGFR-3–responsive lymphatic-like vessel

  • Text
  • PDF
Abstract

In glaucoma, aqueous outflow into the Schlemm’s canal (SC) is obstructed. Despite striking structural and functional similarities with the lymphatic vascular system, it is unknown whether the SC is a blood or lymphatic vessel. Here, we demonstrated the expression of lymphatic endothelial cell markers by the SC in murine and zebrafish models as well as in human eye tissue. The initial stages of SC development involved induction of the transcription factor PROX1 and the lymphangiogenic receptor tyrosine kinase VEGFR-3 in venous endothelial cells in postnatal mice. Using gene deletion and function-blocking antibodies in mice, we determined that the lymphangiogenic growth factor VEGF-C and its receptor, VEGFR-3, are essential for SC development. Delivery of VEGF-C into the adult eye resulted in sprouting, proliferation, and growth of SC endothelial cells, whereas VEGF-A obliterated the aqueous outflow system. Furthermore, a single injection of recombinant VEGF-C induced SC growth and was associated with trend toward a sustained decrease in intraocular pressure in adult mice. These results reveal the evolutionary conservation of the lymphatic-like phenotype of the SC, implicate VEGF-C and VEGFR-3 as critical regulators of SC lymphangiogenesis, and provide a basis for further studies on therapeutic manipulation of the SC with VEGF-C in glaucoma treatment.

Authors

Aleksanteri Aspelund, Tuomas Tammela, Salli Antila, Harri Nurmi, Veli-Matti Leppänen, Georgia Zarkada, Lukas Stanczuk, Mathias Francois, Taija Mäkinen, Pipsa Saharinen, Ilkka Immonen, Kari Alitalo

×

Figure 3

The lymphangiogenic growth factor VEGF-C is critical for SC development.

Options: View larger image (or click on image) Download as PowerPoint
The lymphangiogenic growth factor VEGF-C is critical for SC development....
(A and B) SC morphology (A) and mean area (B; data from 1 litter) in transgenic K14-VEGFR-31–3-Ig mice (n = 3), their WT littermate controls (n = 3), and K14-VEGFR-34–7-Ig mice (n = 4) at P7. (C and D) SC morphology (C) and mean area (D; data from 2 litters) in VegfciΔR26 (n = 4) and control Vegfcfl/fl littermate (n = 5) mice at P7, after induction of Cre activity from P1 to P5 with daily 4-OHT injections. (E and F) SC morphology (E) and mean area (F; data from 1 litter) in Vegfd–/– (n = 6) and littermate WT (n = 3) mice. (G and H) SC morphology (G) and mean area (H; data from 3 litters, and data from F included for comparison) in VegfciΔR26 Vegfd–/– (n = 8) and control littermate Vegfcfl/fl Vegfd–/– (n = 5) mice at P7 after induction of Cre activity. Scale bars: 100 μm (A, C, E, and G). *P < 0.05; **P < 0.01; #P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Referenced in 2 patents
Referenced in 6 Wikipedia pages
150 readers on Mendeley
1 readers on CiteULike
See more details