Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells
Natsumi Araya, … , Steven Jacobson, Yoshihisa Yamano
Natsumi Araya, … , Steven Jacobson, Yoshihisa Yamano
Published June 24, 2014
Citation Information: J Clin Invest. 2014;124(8):3431-3442. https://doi.org/10.1172/JCI75250.
View: Text | PDF
Research Article Immunology Article has an altmetric score of 2

HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells

  • Text
  • PDF
Abstract

Human T-lymphotropic virus type 1 (HTLV-1) is linked to multiple diseases, including the neuroinflammatory disease HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma. Evidence suggests that HTLV-1, via the viral protein Tax, exploits CD4+ T cell plasticity and induces transcriptional changes in infected T cells that cause suppressive CD4+CD25+CCR4+ Tregs to lose expression of the transcription factor FOXP3 and produce IFN-γ, thus promoting inflammation. We hypothesized that transformation of HTLV-1–infected CCR4+ T cells into Th1-like cells plays a key role in the pathogenesis of HAM/TSP. Here, using patient cells and cell lines, we demonstrated that Tax, in cooperation with specificity protein 1 (Sp1), boosts expression of the Th1 master regulator T box transcription factor (T-bet) and consequently promotes production of IFN-γ. Evaluation of CSF and spinal cord lesions of HAM/TSP patients revealed the presence of abundant CD4+CCR4+ T cells that coexpressed the Th1 marker CXCR3 and produced T-bet and IFN-γ. Finally, treatment of isolated PBMCs and CNS cells from HAM/TSP patients with an antibody that targets CCR4+ T cells and induces cytotoxicity in these cells reduced both viral load and IFN-γ production, which suggests that targeting CCR4+ T cells may be a viable treatment option for HAM/TSP.

Authors

Natsumi Araya, Tomoo Sato, Hitoshi Ando, Utano Tomaru, Mari Yoshida, Ariella Coler-Reilly, Naoko Yagishita, Junji Yamauchi, Atsuhiko Hasegawa, Mari Kannagi, Yasuhiro Hasegawa, Katsunori Takahashi, Yasuo Kunitomo, Yuetsu Tanaka, Toshihiro Nakajima, Kusuki Nishioka, Atae Utsunomiya, Steven Jacobson, Yoshihisa Yamano

×

Figure 5

CCR4 shows potential as a molecular target for HAM/TSP immunotherapy.

Options: View larger image (or click on image) Download as PowerPoint
CCR4 shows potential as a molecular target for HAM/TSP immunotherapy.
(A...
(A–G) Cells isolated from HAM/TSP patients were sorted via FACS (A; n = 7) or cultured for 7 days under the following conditions: PBMCs were cultured with various concentrations of KM2760 or 1 μg/ml PSL (B–E; n = 9), and CSF cells were cultured with 1 μg/ml KM2760 (F and G; n = 8). (A, C, and F) HTLV-1 proviral DNA loads were measured using quantitative PCR. (D) Degree of spontaneous proliferation was assessed by measuring 3H-thymidine incorporation. (E and G) IFN-γ production in the culture media was evaluated using CBA assays. HTLV-1 resided in CD4+CCR4+ rather than CCR4– cells among PBMCs (A), and KM2760 treatment effectively targeted these cells (B). Consequently, KM2760 treatment successfully reduced HTLV-1 proviral DNA load (C), suppressed spontaneous proliferation (D), and decreased IFN-γ production (E) in PBMC cultures as well as reducing HTLV-1 DNA load (F) and IFN-γ production (G) in CSF cell cultures derived from HAM/TSP patients. (A and C–E) Data are mean ± SD. (B, F, and G) Thick horizontal bars represent mean value for all patients; line segments represent individual patients. Statistical analyses were performed using Friedman test followed by Dunn test for multiple comparisons (C–E) or Wilcoxon test (A, B, F, and G). *P < 0.05, **P < 0.01, ***P < 0.001 vs. untreated control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 2 X users
81 readers on Mendeley
See more details