Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Working toward immune tolerance in lung transplantation
Xinguo Jiang, Mark R. Nicolls
Xinguo Jiang, Mark R. Nicolls
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(3):967-970. https://doi.org/10.1172/JCI74701.
View: Text | PDF
Commentary

Working toward immune tolerance in lung transplantation

  • Text
  • PDF
Abstract

Long-term allograft survival is a major challenge facing solid organ transplantation. Recent studies have shown a negative correlation between infiltration of memory T cells and allograft survival. Furthermore, blockade of leukocyte activation increases acceptance of transplanted organs, including heart, liver, and kidney. Lung allografts are associated with high rates of rejection, and therapies that increase acceptance of other transplanted organs have not translated into the lung. In this issue of the JCI, Krupnick and colleagues demonstrate in a murine model that lung allograft acceptance requires infiltration of a specific T cell population into the graft. This study highlights the unique immunobiology of the lung and the complexity of lung transplant tolerance.

Authors

Xinguo Jiang, Mark R. Nicolls

×

Figure 1

Unique factors promote lung transplant rejection and acceptance.

Options: View larger image (or click on image) Download as PowerPoint
Unique factors promote lung transplant rejection and acceptance.
Lung tr...
Lung transplants are particularly vulnerable to rejection, due to continual exposure to the external environment. Particulates can trigger inflammation, and pathogens, including viruses, bacteria, and fungi, may promote heterologous immunity. Brain death in the organ donor can cause lung inflammation, which can negatively impact new transplant function. Other factors that contribute to lung allograft rejection are ischemia/reperfusion injury and HLA immunogenicity of the graft. Furthermore, lack of a bronchial artery circulation after surgery may compromise allograft function. While these factors are proinflammatory, lungs also possess unique antiinflammatory properties, including antigen-presenting CD11c+ cells that have the capacity to suppress T cell activation through the increased production of indoleamine 2,3-dioxygenase (IDO). Additionally, Krupnick et al. (10) have described a CD44+CD62L+CCR7+ CD8+ Treg that infiltrates lung transplants and is required for costimulation-induced lung allograft acceptance. The proposed mechanism of CD8+ Treg action is mediated through IFN-γ limitation of alloreactive CD4+ T cell proliferation and the local upregulation of NO. The chemokine receptor CCR7 on CD8+ Tregs may bind to CCL21 on CD11c+ dendritic cells to dampen immune responses.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts