Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

β-Adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic Gsα mouse
Kuniya Asai, … , Charles J. Homcy, Stephen F. Vatner
Kuniya Asai, … , Charles J. Homcy, Stephen F. Vatner
Published September 1, 1999
Citation Information: J Clin Invest. 1999;104(5):551-558. https://doi.org/10.1172/JCI7418.
View: Text | PDF
Article

β-Adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic Gsα mouse

  • Text
  • PDF
Abstract

Transgenic (TG) mice with cardiac Gsα overexpression exhibit enhanced inotropic and chronotropic responses to sympathetic stimulation, but develop cardiomyopathy with age. We tested the hypothesis that cardiomyopathy in TG mice with Gsα overexpression could be averted with chronic β-adrenergic receptor (β-AR) blockade. TG mice and age-matched wild-type littermates were treated with the β-AR blocker propranolol for 6–7 months, starting at a time when the cardiomyopathy was developing but was not yet severe enough to induce significant cardiac depression (9.5 months of age), and ending at a time when cardiac depression and cardiomyopathy would have been clearly manifest (16 months of age). Propranolol treatment, which can induce cardiac depression in the normal heart, actually prevented cardiac dilation and the depressed left ventricular function characteristic of older TG mice, and abolished premature mortality. Propranolol also prevented the increase in myocyte cross-sectional area and myocardial fibrosis. Myocyte apoptosis, already apparent in 9-month-old TG mice, was actually eliminated by chronic propranolol. This study indicates that chronic sympathetic stimulation over an extended period is deleterious and results in cardiomyopathy. Conversely, β-AR blockade is salutary in this situation and can prevent the development of cardiomyopathy.

Authors

Kuniya Asai, Gui-Ping Yang, Yong-Jian Geng, Gen Takagi, Sanford Bishop, Yoshihiro Ishikawa, Richard P. Shannon, Thomas E. Wagner, Dorothy E. Vatner, Charles J. Homcy, Stephen F. Vatner

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 483 21
PDF 53 11
Figure 166 3
Citation downloads 61 0
Totals 763 35
Total Views 798
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts