B- and T-cell recirculation is crucial for the function of the immune system, with the control of cell migration being mainly mediated by several chemokines and their receptors. In this study, we investigated the expression and function of CXCR3 on normal and malignant B cells from 65 patients with chronic lymphoproliferative disorders (CLDs). Although CXCR3 is lacking on CD5+ and CD5– B cells from healthy subjects, it is expressed on leukemic B lymphocytes from all (31/31) patients with chronic lymphocytic leukemia (CLL). The presence of CXCR3 was heterogeneous in other B-cell disorders, being expressed in 2 of 7 patients with mantle cell lymphoma (MCL), 4 of 12 patients with hairy cell leukemia (HCL), and 11 of 15 patients with other subtypes of non-Hodgkin’s lymphomas (NHLs). Chemotaxis assay shows that normal B cells from healthy subjects do not migrate in response to IFN-inducible protein 10 (IP-10) and IFN-γ–induced monokine (Mig). In contrast, a definite migration in response to IP-10 and Mig has been observed in all malignant B cells from patients with CLL, but not in patients with HCL or MCL (1/7 cases tested). Neoplastic B cells from other NHLs showed a heterogenous pattern. The migration elicited by IP-10 and Mig was inhibited by blocking CXCR3. No effect of IP-10 and Mig chemokines was observed on the cytosolic calcium concentration in malignant B cells. The data reported here demonstrate that CXCR3 is expressed on malignant B cells from CLDs, particularly in patients with CLL, and represents a fully functional receptor involved in chemotaxis of malignant B lymphocytes.
Livio Trentin, Carlo Agostini, Monica Facco, Francesco Piazza, Alessandra Perin, Marta Siviero, Carmela Gurrieri, Silvia Galvan, Fausto Adami, Renato Zambello, Gianpietro Semenzato
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 314 | 158 |
95 | 29 | |
Figure | 205 | 23 |
Table | 35 | 0 |
Citation downloads | 54 | 0 |
Totals | 703 | 210 |
Total Views | 913 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.