Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using
Mathieu Latreille, Jean Hausser, Ina Stützer, Quan Zhang, Benoit Hastoy, Sofia Gargani, Julie Kerr-Conte, Francois Pattou, Mihaela Zavolan, Jonathan L.S. Esguerra, Lena Eliasson, Thomas Rülicke, Patrik Rorsman, Markus Stoffel
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,267 | 136 |
76 | 43 | |
Figure | 319 | 6 |
Supplemental data | 47 | 3 |
Citation downloads | 71 | 0 |
Totals | 1,780 | 188 |
Total Views | 1,968 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.