Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Membranous nephropathy: from models to man
Laurence H. Beck Jr., David J. Salant
Laurence H. Beck Jr., David J. Salant
Published June 2, 2014
Citation Information: J Clin Invest. 2014;124(6):2307-2314. https://doi.org/10.1172/JCI72270.
View: Text | PDF
Review Series Article has an altmetric score of 17

Membranous nephropathy: from models to man

  • Text
  • PDF
Abstract

As recently as 2002, most cases of primary membranous nephropathy (MN), a relatively common cause of nephrotic syndrome in adults, were considered idiopathic. We now recognize that MN is an organ-specific autoimmune disease in which circulating autoantibodies bind to an intrinsic antigen on glomerular podocytes and form deposits of immune complexes in situ in the glomerular capillary walls. Here we define the clinical and pathological features of MN and describe the experimental models that enabled the discovery of the major target antigen, the M-type phospholipase A2 receptor 1 (PLA2R). We review the pathophysiology of experimental MN and compare and contrast it with the human disease. We discuss the diagnostic value of serological testing for anti-PLA2R and tissue staining for the redistributed antigen, and their utility for differentiating between primary and secondary MN, and between recurrent MN after kidney transplant and de novo MN. We end with consideration of how knowledge of the antigen might direct future therapeutic strategies.

Authors

Laurence H. Beck Jr., David J. Salant

×

Figure 3

Mechanisms of podocyte injury and proteinuria in the passive Heymann nephritis (PHN) model of MN.

Options: View larger image (or click on image) Download as PowerPoint
Mechanisms of podocyte injury and proteinuria in the passive Heymann nep...
(A) The normal podocyte foot process structure is maintained by a well-developed actin cytoskeleton that also serves to anchor the foot processes to the GBM via focal adhesion complexes and cell-matrix adhesion molecules including integrins (α3β1). The normal filtration slit diaphragm (labeled nephrin) forms a final barrier to albumin permeation and is also linked to the actin cytoskeleton via a complex of proteins. (B) In PHN, antibody binding to megalin activates complement leading to assembly and insertion of the MAC (C5b-9). This triggers a cascade of intracellular events (see ref. 90 and the text for details) that contribute to the dissolution of the actin cytoskeleton, which disrupts and displaces the filtration slit diaphragms allowing free passage of albumin into the urine. Collapse of the actin cytoskeleton also affects cell-matrix adhesion and may be the cause of flattening and spreading (effacement) of the podocyte foot processes. Adapted from the American Journal of Physiology — Renal Physiology (90).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 6 X users
Referenced in 3 patents
Referenced in 1 Wikipedia pages
124 readers on Mendeley
1 readers on CiteULike
See more details