Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis
Fulvio Baggi, … , Ferdinando Cornelio, Carlo Antozzi
Fulvio Baggi, … , Ferdinando Cornelio, Carlo Antozzi
Published November 1, 1999
Citation Information: J Clin Invest. 1999;104(9):1287-1295. https://doi.org/10.1172/JCI7121.
View: Text | PDF
Article

Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis

  • Text
  • PDF
Abstract

The mucosal administration of the native antigen or peptide fragments corresponding to immunodominant regions is effective in preventing or treating several T cell–dependent models of autoimmune disease. No data are yet available on oral tolerance with immunodominant T-cell peptides in experimental autoimmune myasthenia gravis (EAMG), an animal model of B cell–dependent disease. We report that oral administration of the T-cell epitope α146-162 of the Torpedo californica acetylcholine receptor (TAChR) α-subunit suppressed T-cell responses to AChR and ameliorated the disease in C57Bl/6 (B6) mice. Protection from EAMG was associated with reduced serum Ab’s to mouse AChR and reduced AChR loss in muscle. The effect of Tα146-162 feeding was specific; treatment with a control peptide did not affect EAMG manifestations. The protective effect induced by peptide Tα146-162 was mediated by reduced production of IFN-γ, IL-2, and IL-10 by TAChR-reactive cells, suggesting T-cell anergy. TGF-β–secreting Th3 cells did not seem to be involved in tolerance induction. We therefore demonstrate that feeding a single immunodominant epitope can prevent an Ab-mediated experimental model of autoimmune disease.

Authors

Fulvio Baggi, Francesca Andreetta, Elisabetta Caspani, Monica Milani, Renato Longhi, Renato Mantegazza, Ferdinando Cornelio, Carlo Antozzi

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Oral administration of purified TAChR suppresses antigen-specific T-cell...
Oral administration of purified TAChR suppresses antigen-specific T-cell responses in B6 mice. Mice were given 1 mg × 4 doses of TAChR orally every other day and were immunized with TAChR 2 days after the last feeding. Mice were sacrificed 10 days after immunization for T-cell proliferation studies. Data are represented as SI ± SEM. Open columns: PBS-treated mice (n = 6); filled columns: TAChR-treated mice (n = 5). The effect of TAChR feeding on T-cell proliferation was statistically significant (P < 0.05) at 2.5 and 0.025 μg/mL of TAChR. The average cpm of cultured LN cells in the absence of antigen were 277 ± 59 for PBS-treated and 404 ± 125 for TAChR-treated mice.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts